Effects of Wood Density And Interlocked Grain on the Shear Strength of Three Amazonian Tropical Hardwoods

Authors

  • Roger E. Hernández
  • Giana Almeida

Keywords:

Interlocked grain, shear strength, tropical woods, Amburana cearensis, Aspidosperma macrocarpon, Clarisia racemosa

Abstract

Three tropical hardwoods, ishpingo (Amburana cearensis A.C. Smith), pumaquiro (Aspidosperma macrocarpon Mart.), and tulpay (Clarisia racemosa Ruiz and Pav.), were studied to determine the effects of wood density and interlocked grain on the shear strength parallel to grain. The maximum angular deviation (MAD) and the interlocked grain index (IG) were used to evaluate interlocked grain. The parameters were determined for interlocked grain samples and for ASTM D 143 shear blocks. There was a strong relationship between the interlocked grain parameters for the three species. MAD was simpler to evaluate compared to IG. The interlocked grain was highly variable within wood species. Failure of sheared blocks was irregular and in general followed the interlocked grain pattern. Hence, apparent shear strength was calculated using either a measured shear area (actual shear strength) or a fixed shear area of 2500 mm2 (nominal shear strength). Wood density positively affected the apparent shear strength of the wood. The relationships were stronger for actual shear strength compared to nominal shear strength. For all species studied, the interlocked grain negatively affected actual shear strength. The relationships between nominal shear strength and interlocked grain parameters were positive for ishpingo and tulpay, but negative for pumaquiro. Finally, we concluded that the ASTM D 143 block shear test method should be adapted for woods with heavily interlocked grain.

References

American Society for Testing and Materials (ASTM). 1997a. ASTM D 143. Standard method of testing for shearing parallel to grain. Philadelphia, PA.nAmerican Society for Testing and Materials (ASTM). 1997b. ASTM D 2395. Standard test methods for specific gravity of wood and wood-base materials. Philadelphia, PA.nAmerican Society for Testing and Materials (ASTM). 1997c. ASTM D 4442. Standard test methods for direct moisture content measurement of wood and wood-base materials. Philadelphia, PA.nArcan, M., Z. Hashin, and A. Voloshin. 1978. A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp. Mech.18(4):141-146.nAróstegui, A. 1982. Recopilación y análisis de estudios tecnológicos de maderas peruanas. Proyecto PNUD/ FAO/PER/81/002. Doc. de trabajo N&deg: 2. Lima, Perú. 52 pp.nBodig, J., and B. Jayne. 1982. Mechanics of wood and wood composites. Van Nostrand Reinhold, New York, NY. 712 pp.nChudnoff, M. 1984. Tropical timbers of the world. USDA, Forest Service. 466 pp.nDebaise, G. R., A. W. Porter, and R. E. Pentoney. 1966. Morphology and mechanics of wood fracture. Mat. Res. Stand.6(10):493-499.nDétienne, P. 1979. Contrefil à rythme annuel dans les faro, Daniellia sp.pl. Bois et forêts des tropiques 183: 67-71.nInstituto Brasileiro De Desenvolvimento Florestal (IBDF). 1988. Madeiras da Amazônia, caracteriísticas e utilizacão. Estacão experimental de Curuá-Una. V.2, Brasília, Brazil. 236 ppnKeenan, F. J., and M. Tejada. 1984. Tropical timber for building materials in the Andean Group countries of South America. IDRC-TS49e, Ottawa. 151 pp.nKloot, N. H. 1948. Mechanical tests on small clear specimens of Queensland maple. Australian Division Forest Products, Reprint N&deg: 107. J. Council Scient. Ind. Res.21(4):279-297.nKribs, D. A. 1950. Commercial foreign woods on the American market, a manual to their structure, identification, uses and distribution. Tropical Wood Laboratory, State College, PA. 241 pp.nLang, E. M. 1997. An alternative method for shear strength assessment. Forest Prod. J.47(11/12):81-84.nLang, E. M, L. Bejo, J. Szalai, and Z. Kovacs. 2000. Orthotropic strength and elasticity of hardwoods in relation to composite manufacture. Part I. Orthotropy of shear strength. Wood Fiber Sci.32(4):502-519.nLimaye, V. D. 1954. Interlocking of grain in Indian timbers. Indian Forester80(1):6-9.nLiu, J. Y. 1984. New shear strength test for solid wood. Wood Fiber Sci.16(4):567-574.nLiu, J. Y, and L. H. Floeter. 1984. Shear strength in principal plane of wood. J. Eng. Mech.110(6):930-936.nLiu, J. Y, D. D. Flach, R. J. Ross, and G. J. Lichtenberg. 1999. An improved shear test fixture using the Iosipescu specimen. Mechanics of Cellulosic Materials. ASME. AMD-Vol. 231/MD-Vol. 85:139-147.nMarsoem, N., and Y. Kikata. 1987. The effect of interlocked grain on the mechanical properties of white meranti. Bull. Nagoya Univ. For. N&deg: 9:51-77.nMartley, J. F. 1920. Double cross-grain. Ann. Apl. Bio.7:224-268.nNorthcott, P. L. 1957. Is spiral grain the normal growth pattern? Forestry Chronicle33:335-352.nRijsdijk, J. F., and P. B. Laming. 1994. Physical and related properties of 145 timbers: Information for practice. Kluwer Academic Publishers, London, UK. 380 pp.nRiyanto, D. S., and R. Gupta. 1996. Effect of ring angle on shear strength parallel to the grain of wood. Forest Prod. J.46(7/8):87-92.nRudinsky, J. A., and J. P. Vité. 1959. Certain ecological and phylogenetic aspects of the pattern of water conduction in conifers. Forest Sci. (5):259-266.nSas Institute. 1988. SAS/Stat Users Guide, Release 6.03 Ed. SAS Institute, Inc., Cary, NC.nSoltis, L. A., and D. R. Rammer. 1997. Bending to shear ratio approach for beam design. Forest Prod. J.47(1): 104-108.nU.S. Forest Products Laboratory. 1999. Wood Hand book: Wood as an engineering material. General Technical Report FPL-GTR-113. USDA, Forest Serv., Forest Prod. Lab., Madison, WI.nWebb, C. D. 1967. Interlocked grain in Liquidambar styraciflua L. XIV IUFRO Congr. München, Vol. XIV, IX, section 41+WG 22/41:398-412.nWebb, C. D. 1969. Variation of interlocked grain in Sweetgum. Forest Prod. J.19(8):45-48.nWeddell, E. 1961. Influence of interlocked grain on the bending strength of timber, with particular reference to utile and greenheart. J. Inst. Wood Sci.7:56-72.nYoshihara, H., O. Hisashi, Y. Kubojima, and M. Ohta. 1999. Applicability of the Iosipescu shear test on the measurement of the shear properties of wood. J. Wood Sci.45:24-29.n

Downloads

Published

2007-06-05

Issue

Section

Research Contributions