State of the Art Paper: Biomimetics: Adapting Performance and Function of Natural Materials for Biobased Composites

Authors

  • Scott Renneckar

Keywords:

Biomimetics, biomimicry, biocomposites, foams, polymer composites, biomineralization, iridescence

Abstract

Natural materials may serve as an excellent template for the design of high-performance manufactured materials. Because natural materials are fabricated at standard temperature and pressure from benign chemicals, adapting or mimicking nature's design methods and structures offers the potential to enhance performance, lower energy requirements, decrease toxic chemical accumulation, and create materials with life cycles that better correspond with the environment. As the forest products industry has matured, adapting naturally occurring designs has meant potential innovation for commodity markets, decreasing manufacturing inputs (energy, carbon, or other materials), and enhancing product performance. This study reviews nature-inspired pathways for biocomposites to 1) enhance the specific mechanical properties, 2) assemble materials from aqueous systems, 3) create hybrid inorganic-biopolymer composites, and 4) develop functional hydrophobic coatings and photonic colored films. To achieve controlled architectures found in natural materials, innovative production technologies that allow for timed processes and self-assembly must be applied to biobased composite manufacturing.

References

Agarwal M, Lvov Y, Varahramyan K (2006) Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology 17(21):5319-5325.nAthamneh AI, Griffin M, Whaley M, Barone JR (2008) Conformational changes and molecular mobility in plasticized proteins. Biomacromolecules 9(11):3181-3187.nBaer E, Hiltner A, Morgan RJ (1992) Biological and synthetic hierarchical composites. Phys Today 45(10):60-67.nBalu B, Breedveld V, Hess DW (2008) Fabrication of rolloff and sticky superhydrophobic cellulose surfaces via plasma processing. Langmuir 24(9):4785-4790.nBhushan B (2009) Biomimetics: Lessons from nature—An overview. Philos T Roy Soc A 367(1893):1445-1486.nBlaker JJ, Lee KY, Mantalaris A, Bismarck A (2010) Ice-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers. Compos Sci Technol 70(13):1879-1888.nBond GM, Richman RH, McNaughton WP (1995) Mimicry of natural material designs and processes. J Mater Eng Perform 4(3):334-345.nBrown CP, Harnagea C, Gill HS, Price AJ, Traversa E, Licoccia S, Rosei F (2012) Rough fibrils provide a toughening mechanism in biological fibers. ACS Nano 6(3):1961-1969.nCapadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319(5868):1370-1374.nCapadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2(12):765-769.nCranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7(9):2522-2530.nCurrey JD (1979) Mechanical properties of bone tissues with greatly differing functions. J Biomech 12(4):313-319.nDave V, Glasser WG (1993) Cellulose-based fibers from liquid-crystalline solutions. 3. Processing and morphology of cellulose and cellulose hexanoate esters. J Appl Polym Sci 48(4):683-699.nDecher G (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277(5330):1232-1237.nDoblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: From genes to rosettes. Plant Cell Physiol 43(12):1407-1420.nDong BH, Hinestroza JP (2009) Metal nanoparticles on natural cellulose fibers: Electrostatic assembly and in situ synthesis. ACS Appl Mater Interfaces 1(4):797-803.nEichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) Review: Current international research into cellulosic fibres and composites. J Mater Sci 36(9):2107-2131.nElazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57-65.nFratzl P, Weinkamer R (2007) Nature's hierarchical materials. Prog Mater Sci 52(8):1263-1334.nGawryla MD, Nezamzadeh M, Schiraldi DA (2008) Foam-like materials produced from abundant natural resources. Green Chem 10(10):1078-1081.nGawryla MD, van den Berg O, Weder C, Schiraldi DA (2009) Clay aerogel/cellulose whisker nanocomposites: A nanoscale wattle and daub. J Mater Chem 19(15): 2118-2124.nGradwell SE, Renneckar S, Esker AR, Heinze T, Gatenholm P, Vaca-Garcia C, Glasser W (2004) Surface modification of cellulose fibers: Towards wood composites by biomimetics. C R Biol 327(9-10):945-953.nHofmann I, Müller L, Greil P, Müller FA (2006) Calcium phosphate nucleation on cellulose fabrics. Surf Coat Tech 201(6):2392-2398.nIwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12(3):831-836.nKaya A, Du X, Liu Z, Lu JW, Morris JR, Glasser WG, Heinze T, Esker AR (2009) Surface plasmon resonance studies of pullulan and pullulan cinnamate adsorption onto cellulose. Biomacromolecules 10(9):2451-2459.nLazaris A, Arcidiacono S, Huang Y, Zhou J-F, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295(5554):472-476.nLi S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24(10):5585-5590.nLi Z, Renneckar S, Barone J (2010) Nanocomposites prepared by in-situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17(1):57-68.nLin Z, Renneckar S, Hindman DP (2008) Nanocomposite-based lignocellulosic fibers 1. Thermal stability of modified fibers with clay-polyelectrolyte multilayers. Cellulose 15(2):333-346.nLiu DP, Majewski P, O'Neill BK, Ngothai Y, Colby CB (2006) The optimal SAM surface functional group for producing a biomimetic HA coating on Ti. J Biomed Mater Res A 77A(4):763-772.nLiu RYF, Bernal-Lara TE, Hiltner A, Baer E (2005) Polymer interphase materials by forced assembly. Macromolecules 38(11):4819-4827.nLiu Z, Choi H, Gatenholm P, Esker AR (2011) Quartz crystal microbalance with dissipation monitoring and surface plasmon resonance studies of carboxymethyl cellulose adsorption onto regenerated cellulose surfaces. Langmuir 27(14):8718-8728.nLvov Y, Ariga K, Ichinose I, Kunitake T (1995) Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc 117(22):6117-6123.nMamedov AA, Kotov NA (2000) Free-standing layer-by-layer assembled films of magnetite nanoparticles. Langmuir 16(13):5530-5533.nMatsumura H, Sugiyama J, Glasser WG (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polym Sci 78(13):2242-2253.nMertaniemi H, Laukkanen A, Teirfolk J-E, Ikkala O, Ras RHA (2012) Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces. RSC Advances 2(7):2882-2886.nMicic M, Radotic K, Jeremic M, Djikanovic D, Kammer SB (2004) Study of the lignin model compound supramolecular structure by combination of near-field scanning optical microscopy and atomic force microscopy. Colloid Surface B 34(1):33-40.nNishino T, Arimoto N (2007) All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 8(9):2712-2716.nNishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683-7687.nOmenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329(5991):528-531.nPeng Y, Liu H, Zhang X, Li Y, Liu S (2009) CNT templated regioselective enzymatic polymerization of phenol in water and modification of surface of MWNT thereby. J Polym Sci Pol Chem 47(6):1627-1635.nPillai KV, Renneckar S (2009) Cation-pi interactions as a mechanism in technical lignin adsorption to cationic surfaces. Biomacromolecules 10(4):798-804.nPodsiadlo P, Choi S-Y, Shim B, Lee J, Cuddihy M, Kotov NA (2005) Molecularly engineered nanocomposites: Layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6(6):2914-2918.nReed EJ, Klumb L, KoobatianM, Viney C (2009) Biomimicry as a route to new materials: What kinds of lessons are useful? Philos T Roy Soc A 367(1893):1571-1585.nRenneckar S, Zhou Y (2009) Nanoscale coatings on wood: Polyelectrolyte adsorption and layer-by-layer assembled film formation. ACS Appl Mater Interfaces 1(3):559-566.nRhee S-H, Tanaka J (2000) Hydroxyapatite formation on cellulose cloth induced by citric acid. J Mater Sci Mater Med 11(7):449-452.nRho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92-102.nRials TG, Glasser WG (1989) Multiphase materials with lignin. IV. Blends of hydroxypropyl cellulose with lignin. J Appl Polym Sci 37(8):2399-2415.nRodriguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfaces 3(3):681-689.nSaxena IM, Brown RM (2005) Cellulose biosynthesis: Current views and evolving concepts. Ann Bot 96(1):9-21.nSehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8):1824-1832.nSeki Y, Schneider MS, Meyers MA (2005) Structure and mechanical behavior of a toucan beak. Acta Mater 53(20):5281-5296.nShopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422-425.nSiegel SM (1957) Non-enzymic macromolecules as matrices in biological synthesis: The role of polysaccharides in peroxidase-catalyzed lignin polymer formation from eugenol. J Am Chem Soc 79(7):1628-1632.nSoykeabkaew N, Sian C, Gea S, Nishino T, Peijs T (2009) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16(3):435-444.nSvagan AJ, Jensen P, Dvinskikh SV, Furo I, Berglund LA (2010) Towards tailored hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-drying. J Mater Chem 20(32):6646-6654.nSvagan AJ, Samir MASA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8):2556-2563.nSvagan AJ, Samir MASA, Berglund LA (2008) Biomimetic foams of highmechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater (Deerfield Beach Fla) 20(7):1263-1269.nTampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G (2003) Biologically inspired synthesis of bone-like composite: Self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res A 67A(2):618-625.nTang ZY, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2(6):413-419.nTas CA (2000) Synthesis of biomimetic Ca-hydroxyapatite powders at 37 C in synthetic body fluids. Biomaterials 21(14):1429-1438.nTenHuisen KS, Martin RI, Klimkiewicz M, Brown PW (1995) Formation and properties of a synthetic bone composite: Hydroxyapatite-collagen. J Biomed Mater Res 29(7):803-810.nTerashima N, Kitano K, Kojima M, Yoshida M, Yamamoto H, Westermark U (2009) Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. J Wood Sci 55(6):409-416.nTouzel J-P, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterization of dehydrogenation polymers in gluconacetobacter xylinuscellulose and cellulose/pectin composite. J Agric Food Chem 51(4):981-986.nViney C (1997) Natural silks: Archetypal supramolecular assembly of polymer fibres. Supramol Sci 4(1):75-81.nViney C, Bell FI (2004) Inspiration versus duplication with biomolecular fibrous materials: Learning nature's lessons without copying nature's limitations. Curr Opin Solid St M 8(2):165-171.nWagberg L, Decher G, Norgren M, Lindstrom T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784-795.nWan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mat Sci Eng C-Bio S 27(4):855-864.nWeiner S, Traub W (1992) Bone structure: From angstroms to microns. FASEB J 6(3):879-885.nWinterhalter M, Sonnen AFP (2006) Stable air bubbles—Catch them if you can! Angew Chem Int Ed 45 (16):2500-2502.nZhang H, Cooper AI (2005) Synthesis and applications of emulsion-templated porous materials. Soft Matter 1(2):107-113.nZhou Y, Renneckar S, Li Q, Pillai K, Lin Z, Church WT (2010) Layer-by-layer bondlines for macroscale adhesion. Bioresources 5(3):1530-1541.nZimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mat Sci Eng C-Bio S 31(1):43-49.n

Downloads

Published

2013-01-10

Issue

Section

Research Contributions