Effect of Pretreatment of Bagasse Pulp on Properties of Isolated Nanofibers and Nanopaper Sheets

Authors

  • Mohammad L. Hassan
  • Aji P. Mathew
  • Enas A. Hassan
  • Kristiina Oksman

Keywords:

Bagasse, nanofibers, nanopaper, xylanase, cellulase

Abstract

Nanofibers were isolated from bagasse pulp pretreated with dilute hydrochloric acid, dilute sodium hydroxide, cellulase, or xylanase enzymes using high-shear ultrafine grinding and high-pressure homogenization. The effect of the different pretreatments on chemical composition and structure of isolated nanofibers was studied using chemical analyses, X-ray diffraction, and Fourier transform infrared. The dimensions and properties of the isolated nanofibers were followed at the different processing stages using optical microscopy, transmission electron microscopy, atomic force microscopy, and tensile properties (wet and dry). The diameter of the microfibrils was in the range of 7-30 nm for untreated and pretreated bagasse pulps while larger microfibrillar bands (to 150 nm wide) were observed for untreated bagasse pulp than the pretreated pulps (to 90 nm wide). Nanopaper sheets made from nanofibers isolated from alkali- and xylanase-treated pulps showed better wet and dry tensile strength than those made from the other pulps.

References

Abe K, Yano H. (2009) Comparison of the characteristics of cellulose microfibrils aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017-1023.nAhmed A, Singh A, Ward OP. (2005) Culture-based strategies for reduction of protease activity in filtrates from Aspergillus niger NRRL3. World J Microb Biot 21: 1557-1583.nAlemdar A, Sain M. (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Biores Technol 99(6):1664-1671.nBastawde KB. (1992) Cellulolytic enzymes of a thermotolerant Aspergillus terreus strain and their action on cellulosic substrates. World J Microb Biot 8:45-49.nBhatnagar A, Sain M. (2005) Processing of cellulose nanofibers reinforced composites. J Reinf Plast Comp 24 (12):1259-1268.nBrowning B. (1956) Methods of wood chemistry. Volume 1. Interscience, New York, NY. 377 pp.nChakraborty A, Sain M, Kortschot M. (2005) Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1): 102-107.nClark JA. (1981) Pulp technology and treatment for paper. Miller Freeman Publications, San Francisco, CA.nDinand E, Chanzy H, Vignon MR. (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll 13(3):275-283.nDufresne A, Cavaillé J-Y, Vignon MR. (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185-1194.nDufresne A, Dupeyre D, Vignon MR. (2000) Cellulose microfibrils from potato tuber cells: Processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080-2092.nFengel D, Wegener G. (1989) Wood: Chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, Germany. 613 pp.nGhose TK. (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257-268.nHabibi Y, Heux L, Mahrouz M, Vignon MR. (2008) Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits. Carbohydr Polym 72(1):102-112.nHassan M L, Mathew AP, Hassan EA, El-Wakeel NA, Oksman K. (2010) Nanofibers from bagasse and rice straw: Process optimization and properties. Submitted for publication to Wood Sci Technol.nHayashi T, Marsden MPF, Delmer DP. (1987) Pea xyloglucan and cellulose. Plant Physiol 83(2):384-389.nHenriksson M, Henriksson G, Berglund LA, Lindström T. (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434-3441.nHubbe MA, Rojas OJ, Lucia LA, Sain M. (2008) Cellulosic nanocomposites: A review. Bioresources 3(3):929-980.nIwamoto S, Abe K, Yano H. (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9(3):1022-1026.nIwamoto S, Nakagaito AN, Yano H, Nogi M. (2005) Optically transparent composites reinforced with plant fibers-based nanofibers. Appl Phys (Berl) 81:1109-1112.nKenealy WR, Jeffries TW. (2003) Enzyme processes for pulp and paper: A review of recent developments. Pages 210-239 in B Goodell, DD Nicholas, and TP Schultz, eds. Wood deterioration and preservation: Advances in our changing world. American Chemical Society, Washington, DC.nKacuráková M, Capek P, Sasinková V, Wellner N, Ebringerová A. (2000) FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr Polym 43(2):195-203.nKlemm D, Heublein B, Fink H-P, Bohn A. (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358-3393.nLai-Kee-Him H, Chanzy H, Müler M, Putaux J-L, Imai T, Bulone V. (2002) In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: Structural differences. J Biol Chem 277(40):36931-36939.nLiu CF, Xu F, Sun JX, Ren JL, Sun RC, Curling S. (2006) Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohyd Res 341(16):2677-2687.nMalainine ME, Dufresne A, Dupeyre D, Mahrouz M, Vuong R, Vignon MR. (2003) Structure and morphology of cladodes and spines of Opuntia ficus-indica. Cellulose extraction and characterization. Carbohydr Polym 51(1): 77-83.nMorán JI, Alvarez VA, Cyras VP, Vázquez A. (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149-159.nNobuyuki K, Tsutsumi Y, Nishida T. (1995) Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system. Appl Environ Microbiol 61(2):617-622.nO'Connor RT, Dupre EF, Mitcham D. (1958) Application of infrared absorption spectroscopy to investigation of cotton and modified cotton. Textile Res J 28(5):382-392.nOksanen T, Pere J, Buchert J, Viikari L. (1997) The effect of Trichoderma reesei cellulases and hemicellulases on the paper technical properties of never-dried bleached kraft pulp. Cellulose 4(4):329-339.nPääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T. (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934-1941.nRoncero MB, Torres AL, Colom JF, Vidal T. (2005) The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. J Biotechnol 96:21-30.nRondeau-Mouro C, Bouchet B, Pontoire B, Robert P, Mazoyer J, Buléon A. (2003) Structural features and potential texturising properties of lemon and maize cellulose microfibrils. Carbohydr Polym 53(3):241-252.nSaito T, Nishiyama T, Putaux JL, Vignon M, Isogai A. (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687-1691.nSassi JF, Chanzy H. (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111-127.nSegal L, Creely JJ, Martin AE, Conrad CM. (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res J 29:786-794.nStork G, Puls J. (1996) Change in properties of different recycled pulps by endoflucanase treatment. Pages 145-150 in E Srebotnik and K Messner, eds. Biotechnology in the pulp and paper industry. Facultas Universitätsverlag, Vienna, Austria.nSubramanian R, Knononov A, Kang T, Paltakari J, Paulapura H. (2008) Structure and properties of some natural cellulosic fibrils. Bioresources 3:192-203.nSuurnakki A, Kantelinen A, Buchert J, Viikari L. (1994) Enzyme aided bleaching of industrial softwood kraft pulps. Tappi J 77(11):111-116.nWada M, Heux L, Sugiyama J. (2004) Polymorphism of cellulose I family: Reinvestigation of cellulose IV. Biomacromolecules 5(4):1385-1391.nWang B, Sain M. (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67(11-12):2517-2521.nWang B, Sain M, Oksman K. (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14(2):89-103.nWong KK, Nelson SL, Saddler JN. (1996) Xylanase treatment for the peroxide bleaching of oxygen delignified kraft pulps derived from three softwood species. J Biotechnol 48:137-145.nZhao H-P, Feng X-Q, Gao H. (2007) Ultrasonic technique for extracting nanofibers from natural materials. Appl Phys Lett 90:073112. 2 ppnZimmermann T, Bordeanu N, Strub E. (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79(4):1086-1093.nZuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P. (2009) Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76(1):51-59.n

Downloads

Published

2010-07-22

Issue

Section

Research Contributions