EQUILIBRIUM MOISTURE CONTENT UNDER VACUUM CONDITIONS
Abstract
The equilibrium moisture content (EMC) of three species was measured under vacuum conditions. Temperature, RH, and ambient pressure in a chamber were controlled during the experiments to obtain accurate EMC measurement under vacuum. Based on the experimental results and on the Hailwood–Horrobin model for EMC, the desorption isotherms of wood under vacuum were analyzed.
EMC charts and a database under vacuum conditions were also built. Results showed that the desorption isotherms of wood under vacuum conditions also presented a typical sigmoid shape similar to the one at atmospheric conditions. The effect of ambient pressure on EMC was small at high RH ranges and became obvious with decreasing RH. Also, the EMC of ambient pressure from 53.3 to 101.3 kPa was not obvious because the difference in EMC was only 0.1-0.4%. Conversely, the effect of pressure became greater from 53.3 to 13.3 kPa and the difference in EMC was 1.2-1.9%. EMC corresponding to temperature, RH, and ambient pressure at vacuum conditions was built with the chart and equations based on experimental results from the real-time MC measurement for vacuum drying and serves as an aid in wood research and drying control under vacuum conditions.
Downloads
Published
Issue
Section
License
The copyright of an article published in Wood and Fiber Science is transferred to the Society of Wood Science and Technology (for U. S. Government employees: to the extent transferable), effective if and when the article is accepted for publication. This transfer grants the Society of Wood Science and Technology permission to republish all or any part of the article in any form, e.g., reprints for sale, microfiche, proceedings, etc. However, the authors reserve the following as set forth in the Copyright Law:
1. All proprietary rights other than copyright, such as patent rights.
2. The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In the case of whole articles, such third parties must obtain Society of Wood Science and Technology written permission as well. However, the Society may grant rights with respect to Journal issues as a whole.
3. The right to use all or part of this article in future works of their own, such as lectures, press releases, reviews, text books, or reprint books.