Effect of Fiber Size Distribution on Medium-Denstiy Fiberboard Properties Caused by Varied Steaming Time and Temperature of Defibration Process

Authors

  • J. T. Benthien
  • C. Bähnisch
  • S. Heldner
  • M. Ohlmeyer

Keywords:

Medium-density fiberboard, fiber quality, fiber size characterization, fiber length determination

Abstract

For wood particle-based composite panels, particle size distribution and morphology are classified as crucial factors for the industrial production process and the resulting product properties. However, fiber quality control for medium-density fiberboard (MDF) production is still just done on a low technical level because adequate measurement systems are not available. Consequently, current fiber characterization approaches appear to be limited in reproducibility and do not fit optimally for process control. It is, therefore, the aim of this study to 1) introduce a recently developed particle analysis system that fulfills the requirements for MDF fiber characterization; and 2) show how defibration conditions, fiber size distribution, and fiberboard properties correlate with each other. Three different fiber types (thermomechanical pulp [TMP]) were produced by varying the steaming time and temperature of a thermomechanical refiner process. Fiber size distribution was determined, and properties of test panels made using these fibers as raw material were investigated. Fiber size decreased with increasing steaming time and temperature. Mechanical properties increased with increasing fiber length, whereas physical properties decreased.

References

Benker B, Erbreich M, Plinke B, Wollmann A (2003) Characterisation of wood fibres for MDF—Off-line and on-line measurements for production monitoring. Pages 1-13 in Biocomposites Centre, ed. Proc 7th European Panel Products Symposium (EPPS 7), 8-10 October 2003, Llandudno, Wales, UK. Biocomposites Centre, Bangor, Wales, UK.nBenthien JT, Hasener J, Pieper O, Tackmann O, Bähnisch C, Heldner S, Ohlmeyer M (2013) Determination of MDF fiber size distribution: Requirements and innovative solution. In Proc International Wood Composites Symposium, 3-4 April 2013, Seattle, WA.nHasener J (2013) Inline fasercharakterisierung—Traum oder realität (Inline fibre characterization—Dream or reality). In Proc 4th Innovationsworkshop Holzwerkstoffe, 14 May 2013, Köln, Germany.nJensen U, Seltmann J (1969) Untersuchungen zur trockenen fraktionierung von holzfaserstoffen [Studies on dry fractionation of wood fibre]. Holztechnologie 10(1):29-32.nKrug D (2010) Einfluss der faserstoff-aufschlussbedingungen und des bindemittels auf die eigenschaften von mitteldichten faserplatten (MDF) für eine verwendung im feucht- und außenbereich [Influence of fiber digestion conditions and of the binder on the properties of medium-density fiberboard (MDF) for use in the wet- and outdoor use]. Dissertation thesis, Hamburg University, Hamburg, Germany. 276 pp.nLu JZ, Monlezun CJ, Wu Q, Cao QV (2007) Fitting Weibull and lognormal distributions to medium-density fiberboard fiber and wood particle length. Wood Fiber Sci 39(1):82-94.nMäbert M (2009) Fibre characterisation in the wood-based materials industry. In Proc PTS Pulp Symposium, 24-25 November 2009, Dresden, Germany.nMeine H, Köthe U (2005) Image segmentation with the exact watershed transform. Pages 400-405 in JJ Villanueva, ed. Proc 5th IASTED Visualization, Imaging, and Image Processing, September 2005, Benidorn, Spain.nMicko MM, Yanchuk AD, Wang EIC, Taylor FW (1982) Computerised measurement of fibre length. IAWA Bull 3(2):111-113.nMyers GC (1983) Relationship of fiber preparation and characteristics to performance of medium-density hardboards. Forest Prod J 33(10):43-51.nOhlmeyer M, Hasener J, Schmid H (2006) New methods to determine fibre quality for MDF-production. Pages 221-232 in Biocomposites Centre, ed Proc 10th European Panel Products Symposium (EPPS 10), 11-13 October 2006, Llandudno, Wales, UK.nBiocomposites Centre, Bangor, Wales, UK. Ohlmeyer M, Seppke B, Pieper O, Hasener J (2011a) Fiber quality control for MDF production. In Proc Joint International Symposium on Wood Composites and Veneer Processing and Products, 5-7 April 2011, Seattle, WA.nOhlmeyer M, Pieper O, Seppke B, Hasener J (2011b) Entwicklung einer software zur bildanalytischen qualitätskontrolle von holzfasern für die herstellung von mitteldichten faserplatten (MDF). Arbeitsbericht aus dem Institut fü r holztechnologie und holzbiologie [Influence of fiber digestion conditions and of the binder on the properties of medium-density fiberboard (MDF) for use in the wet- and outdoor use]. 2011/02, Hamburg, Germany. 50 pp.nPieper O, Bückner J, Seppke B, Ohlmeyer M, Hasener J (2011) Faserinspektion zur optimierung der oberflächenqualität [Fiber inspection to improve the surface quality]. In Proc 8th Fußbodenkolloquium, 10-11 November 2011, Dresden, Germany. Institut für Holztechnologie Dresden (IHD), Dresden, Germany.nPilke B, Schirp A, Weidenmü ller I (2012) Methoden der holzpartikelgrößenmessung-Von der technologischen fragestellung zur aussagekräftigen statistik [Methods of wood particle size measurement of the technological question of descriptive statistics]. Holztechnologie 53(4):11-17.nPlinke B, Benker B (2003) Messverfahren zur morphologischen charakterisierung von faserstoff fü r die herstellung mitteldichter faserplatten (MDF) [Measuring method for the morphological characterization of pulp for the production of medium-density fiberboard (MDF)]. Abschlussbericht AiF-Vorhaben 12590N, Braunschweig, Clausthal: Wilhelm-Klauditz-Institut, Cutec. Braunschweig, Germany, 114 pp.nQuirk JT (1981) Semiautomated recording of wood cell dimensions. Forest Sci 27(2):336-338.nRobertson G, Olson J, Allen P, Chan B, Seth R (1999) Measurement of fiber length, coarseness, and shape with the fiber quality analyzer. Tappi J 82:93-98.nRoffael E, Bär G, Behn C, Dix B (2009) Einfluss der aufschlusstemperatur auf die morphologischen eigenschaften von TMP aus kiefernholz [Influence the digestion temperature on the morphological characteristics of TMP pine]. Eur Journal of Wood and Wood Products 67:119-120.nSchneider T (1999) Untersuchungen über den einfluss von aufschlussbedingungen des holzes und der fasertrocknung auf die eigenschaften von mitteldichten faserplatten [Studies on the influence of information conditions of wood and fiber drying on the properties of medium-density fiberboard]. Dissertation thesis, Fakulatät für Forstwissenschaft und Waldökologie der Georg-August-Universität Göttingen, Shaker Verlag, Aachen, Germany. 84 pp.nShi JL, Zhang SY, Riedl B (2006) Multivariante modeling of MDF panel properties in relation to wood fiber characteristics. Holzforschung 60(3):285-293.nTechnisches Datenblatt für die Holzindustrie 1975/2 (1975). Charakterisierung der feinheit von holzfaserstoff durch trockene siebfraktionierung [Characterization of fineness of wood fiber through dry sieve fractionation]. Holztechnologie 16(3):182-184.nUnser M, Aldroubi A, Eden M (1993) B-spline signal processing. II. Efficiency design and applications. IEEE Transactions on Signal Processing 41(2):834-848.nWenderdel C, Krug D (2012) Untersuchungen zum einfluss der aufschlussbedingungen auf die morphologische ausprägung von aus kiefernholz hergestellten TMP-faserstoff [Studies on the effect of digestion conditions on the morphological expression of TMP pulp produced from pine]. Eur J Wood Wood Prod 70:85-89.nWessbladh A, Mohr R (1999) Faserfeinheiten: Moderne analysemethoden liefern online-qualitätsindizes [Fiber fineness: Modern analysis methods deliver online quality indexes]. MDF-Magazin, DRW-Verlag Weinbrenner GmbH & Co, Leinfelden-Echterdingen, Germany.n

Downloads

Published

2014-04-04

Issue

Section

Research Contributions