Transverse Compression Strength and Fracture of Spruce Wood Modified by Melamine-Formaldehyde Impregnation of Cell Walls
Keywords:
Impregnation, melamine-formaldehyde resin, spruce wood, transverse compression, UVmicroscopyAbstract
In comparison with mechanical properties in longitudinal direction, the transverse mechanical properties of wood are far from satisfying. In an attempt to modify wood for improved transverse compression strength and stiffness, spruce wood samples were impregnated with an aqueous solution of melamine-formaldehyde resin. After polymerization, the tangential compression strength of treated samples was 82% higher compared to the untreated reference, and radial compression strength had increased by 290%. The average resin concentration in the cell walls of treated samples amounted to 0.125 g g-1, as measured with the UV-microscope. In contrast, less than 2% of the cell cavities (lumina), were found to be filled with resin. Thus the improvement of strength and stiffness obtained is attributed to modification of the cell wall and not to filing of tracheid lumina. Yielding-behavior under excessive compression load changed from plastic buckling in the reference samples to brittle fracture of cell walls in the treated samples. Even though a certain increase of brittleness has to be tolerated, it is demonstrated that melamine-formaldehyde reinforcement of cell walls has a distinctly improving effect on the properties of spruce in transverse compression.References
Burmester, A. 1973. Einfluβ einer Wärme-Druck-Behandlung halbtrockenen Holzes auf seine Formbeständigkeit. Holz Roh- Werkst.31:237-243.nBuro, A. 1954. Die Wirkung von Hitzebehandlungen auf die Pilzresistenz von Kiefern- und Buchenholz. Holz Roh- Werkst.12:297-304.nDaniel, I. M., and O. Ishai. 1994. Engineering mechanics of composite materials. Oxford University Press, New York, NY.nDinwoodie, J. M. 1975. Timber—A review of the structure-mechanical property relationship. J. Microscopy104:3-32.nDunky, M. 1998. Urea-formaldehyde (UF) adhesive resins for wood. Int. J. Adhesion Adhesives18:95-107.nEllis, W. D., and R. M. Rowell. 1984. Reaction of isocyanates with southern pine wood to improve dimensional stability and decay resistance. Wood Fiber Sci.16:349-356.nGalperin, A. S., G. G. Kuleshov, V. I. Tarashkevich, and G. M. Shutov. 1995. Manufacturing and properties of modified wood: A review of 25 years' work. Holzforschung49:45-50.nGindl, W., and H. S. Gupta. 2002. Cell-wall hardness and Young's modulus of melamine-modified spruce wood by nano-indentation. Composites Part A: Applied Science and Manufacturing.33:1141-1145.nGindl, W., E. Dessipri, and R. Wimmer. 2002. Using UVmicroscopy to study diffusion of melamine-urea-formaldehyde resin in cell walls of spruce wood. Holzforschung56:103-107.nHagstrand, P. O. 1999. Mechanical analysis of melamine-formaldehyde composites. Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden.nHagstrand, P. O., and K. Oksman. 2001. Mechanical properties and morphology of flax fiber reinforced melamineformaldehyde composites. Polym. Comp.22:568-579.nHua, L., P. Zadorecki, and P. Flodin. 1987a. Cellulose fiber-polyester composites with reduced water sensitivity (1)—Chemical treatment and mechanical properties. Polym. Comp.8:199-202.nHua, L., P. Flodin, and T. Rönnhult. 1987b. Cellulose fiber-polyester composites with reduced water sensitivity (2)—Surface analysis. Polym. Comp.8:203-207.nKeylwerth, R. 1951. Die anisotrope Elastizität des Holzes und der Lagenhölzer. VDI-Forschungsheft 430, p. 27.nKollmann, F., and A. Schneider. 1963. Über das Sorptionsverhalten wärmebahandelter Hölzer. Holz Roh-Werkst.21:77-85.nLandolt, H. H. 1950. Zahlenwerte und Funktionen aus Physik, Chemie, Geophysik und Technik. Landolt-Börnstein, Berlin, Germany.nLarsson, P., and R. Simonson. 1994. A study of strength, hardness and deformation of acetylated Scandinavian softwoods. Holz Roh- Werkst.52:83-86.nLarsson-Brelid, P., R. Simonsen, Ö. Bergman, and T. Nilsson. 2000. Resistance of acetylated wood to biological degradation. Holz Roh- Werkst.58:331-337.nLutomski, K., and M. Lawniczak. 1977. Polymerholz und seine Widerstandsfähigkeit gegen biotische Einflüsse. Holz Roh- Werkst.35:63-65.nMaiti, S. K., L. J. Gibson, and M. F. Ashby. 1984. Deformation and energy absorption diagrams for cellular solids. Acta Metall.32:1963-1975.nMeyer, J. A. 1981. Wood-polymer materials: State of the art. Wood Sci.14:49-54.nMilitz, H. 1991. Die Verbesserung des Schwind und Quellverhaltens und der Dauerhaftigkeit von Holz mittels Behandlung mit unkatallysierte Essigsäureanhydrid. Holz Roh- Werkst.49:147-152.nMiroy, F., P. Eymard, and A. Pizzi. 1995. Wood hardening by methoxymethyl melamine. Holz Roh- Werkst.53:276.nRapp, A. O., and K. Behrmann. 1998. Preparation of wood for microscopic analysis after decay testing. Holz Roh- Werkst.56:277-278.nRapp, A. O., H. Bestgen, W. Adams, and R. D. Peek. 1999. Electron loss spectroscopy (EELS) for quantification of cell-wall penetration of a melamine resin. Holzforschung53:111-117.nRowell, R. M. 1996. Physical and mechanical properties of chemically modified wood, Pages 229-246 in D. N. S. Hon, ed. Chemical modification of lignocellulosic materials. Marcel Dekker, New York, NY.nSchneider, A. 1971. Untersuchungen über den Einfluβ von Wärmebehandlung im temperaturbereich 100 bis 200°C auf Elastizitätsmodul, Druckfestigkeit und Bruchschlagarbeit von Kiefern-Splint- und Buchenholz. Holz Roh- Werkst.29:431-440.nScott, J. A. N., A. R. Procter, B. J. Fergus, and D. A. I. Goring. 1969. The application of ultraviolet microscopy to the distribution of lignin in wood. Description and validity of the technique. Wood Sci. Technol.3:73-92.nSpurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastructure Res.26:31-43.nTabarsa, T., and Y. H. Chui. 2000. Stress-strain response of wood under radial compression. Part 1. Test method and influences of cellular properties. Wood Fiber Sci.32:144-152.nTabarsa, T., and Y. H. Chui. 2001. Characterizing microscopic behaviour of wood under transverse compression. Part II. Effect of species and loading direction. Wood Fiber Sci.33:223-323.nTroughton, G. E. 1969. Accelerated aging of glue-wood bonds. Wood Sci.1:172-176.nTroughton, G. E., and S. Z. Chow. 1968. Evidence for covalent bonding between melamine formaldehyde glue and wood. Part I—Bond degradation. J. Inst. Wood Sci.21:29-33.n
Downloads
Published
Issue
Section
License
The copyright of an article published in Wood and Fiber Science is transferred to the Society of Wood Science and Technology (for U. S. Government employees: to the extent transferable), effective if and when the article is accepted for publication. This transfer grants the Society of Wood Science and Technology permission to republish all or any part of the article in any form, e.g., reprints for sale, microfiche, proceedings, etc. However, the authors reserve the following as set forth in the Copyright Law:
1. All proprietary rights other than copyright, such as patent rights.
2. The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In the case of whole articles, such third parties must obtain Society of Wood Science and Technology written permission as well. However, the Society may grant rights with respect to Journal issues as a whole.
3. The right to use all or part of this article in future works of their own, such as lectures, press releases, reviews, text books, or reprint books.