Shrinkage of Three Tropical Hardwoods Below and Above the Fiber Saturation Point

Authors

  • Roger E. Hernández
  • Michele Pontin

Keywords:

Equilibrium moisture content, fiber saturation point, shrinkage, <i>Cedrelinga cateniformis</i>, <i>Aspidosperma macrocarpon</i>, <i>Ormosia coccinea</i>

Abstract

Two experimental techniques were used to perform moisture sorption tests at 25°C on samples of three tropical hardwood species: tornillo (Cedrelinga cateniformis Ducke), pumaquiro (Aspidosperma macrocarpon Mart.), and huayruro (Ormosia coccinea Jackson) woods. The first technique used saturated salt solutions at a relative humidity from 0% to 90%, and the second one used the pressure membrane method at above 96% relative humidity. These sorption tests were combined with shrinkage measurements. The fiber saturation point (FSP), estimated by interpolation to zero volumetric shrinkage, was 28%, 22.5%, and 21.5% for tornillo, pumaquiro, and huayruro, respectively. Results confirmed that at equilibrium moisture content, radial, tangential, and volumetric shrinkage occur above the actual FSP. This behavior can be explained by the effect of hysteresis at saturation on wood properties. This hysteresis indicates that loss of bound water takes place in the presence of liquid or capillary water, which contradicts the traditional concept of FSP. The initial equilibrium moisture content at which bound water starts to leave cell walls varied largely among the species: 52%, 36%, and 77% for tornillo, pumaquiro, and huayruro, respectively. The liquid water remaining in wood could be principally located in the least permeable flow paths of these wood species.

References

Almeida, G., and R. E. Hernández. 2006a. Changes in physical properties of yellow birch below and above the fiber saturation point. Wood Fiber Sci.38(1):74-83.nAlmeida, G., and R. E. Hernández. 2006b. Influence of the wood porous structure on the moisture desorption at high relative humidities. Wood Sci. Technol. (submitted).nBariska, M. 1992. Collapse phenomena in eucalypts. Wood Sci. Technol.26(3):165-179.nBodig, J., and B. A. Jayne. 1982. Mechanics of wood and wood composites. Van Nostrand Reinhold, New York, NY.nChoong, E. T., and S. S. Achmadi. 1991. Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood Fiber Sci.23(2):185-196nCloutier, A., and Y. Fortin. 1991. Moisture content-water potential relationship of wood from saturated to dry conditions. Wood Sci. Technol.25(4):263-280.nDefo, M., Y. Fortin, and A. Cloutier. 1999. Moisture content-water potential relationship of sugar maple and white spruce wood from green to dry conditions. Wood Fiber Sci.31(1):62-70.nDemanet, A., and P. Morlier. 2000. Mécanismes du collapse du chčne séché sous vide en vapeur d'eau surchauffée. Ann. For. Sci.57(2):165-179.nFortin, Y. 1979. Moisture content-water potential relationship and water flow properties of wood at high moisture contents. PhD Thesis, University of British Columbia, Vancouver, BC, Canada.nGoulet, M., and R. E. Hernández. 1991. Influence of moisture sorption on the strength of sugar maple wood in tangential tension. Wood Fiber Sci.23(2):197-206.nGriffin, D. M. 1977. Water potential and wood-decay fungi. Ann. Rev. Phytopathol.15:319-329.nHart, C. A. 1984. Relative humidity, EMC, and collapse shrinkage in wood. Forest Prod. J.34(11/12):45-54.nHernández, R. E. 1983. Relations entre l'état de sorption et la résistance du bois d'érable à sucre en traction tangentielle. MSc Thesis, Département d'exploitation et utilisation des bois, Université Laval, Québec, Canada.nHernández, R. E. 2006. Influence of extraneous substances, wood density and interlocked grain on the fiber saturation point of some tropical hardwoods (in preparation).nHernández, R. E., and M. Bizonň. 1994. Changes in shrinkage and tangential compression strength of sugar maple below and above the fiber saturation point. Wood Fiber Sci.26(3):360-369.nHiggins, N. C. 1957. The equilibrium moisture content-relative humidity relationships of selected native and foreign woods. Forest Prod. J.7(10):371-377.nJunta Del Acuerdo De Cartagena (JUNAC). 1981. Descripción general y anatómica de 105 maderas del grupo andino. Junta del Acuerdo de Cartagena, Casilla Postal 3237, Lima, Perú.nMenon, R. S., A. L. Mackay, J. R. T. Hailey, M. Bloom, A. E. Burgess, and J. S. Swanson. 1987. An NMR determination of the physiological water distribution in wood during drying. J. Appl. Polym. Sci.33(4):1141-1155.nNaderi, N., and R. E. Hernández. 1997. Effect of a rewetting treatment on the dimensional changes of sugar maple wood. Wood Fiber Sci.29(4):340-344.nPetty, J. A. 1978. Fluid flow through the vessels of birch wood. J. Exp. Botany29(113):1463-1469.nSAS Institute. 2002-2003. SAS 9.1 Ed. SAS Institute, Inc., Cary, NC.nSiau, J. F. 1984. Transport processes in wood. Springer-Verlag, New York, NY.nSiau, J. F. 1995. Wood: Influence of moisture on physical properties. Virginia Polytechnic Institute and State University, VA.nSkaar, C. 1988. Wood-water relations. Springer-Verlag, New York, NY.nSpalt, H. A. 1958. The fundamentals of water vapor sorption by wood. Forest Prod. J.8(10):288-295.nStamm, A. J. 1964. Wood and cellulose science. The Ronald Press Company, New York, NY.nStevens, W. C. 1963. The transverse shrinkage of wood. Forest Prod. J.13(9):386-389.nStone, J. E., and A. M. Scallan. 1967. The effect of component removal upon the porous structure of the cell wall of wood. II. Swelling in water and the fiber saturation point. Tappi50(10):496-501.nTiemann, H. D. 1906. Effect of moisture upon the strength and stiffness of wood. USDA Forest Service, Bulletin 70.nTremblay, C., A. Cloutier, and Y. Fortin. 1996. Moisture content-water potential relationship of red pine sapwood above the fiber saturation point and determination of the effective pore size distribution. Wood Sci.Technol.30: 361-371.nU.S. Departement of Agriculture, Forest Service, Forest Products Laboratory. 1974. Wood handbook: Wood as an engineering material. USDA Agric. Handb. 72. Rev. USDA, Washington, DC.nWheeler, E. A. 1982. Ultrastructural characteristics of red maple (Acer rubrum L.) wood. Wood Fiber14(1):43-53.nWu, Y.-Q., K. Hayashi, Y. Liu, Y. Cai, and M. Sugimori. 2005. Collapse-type shrinkage characteristics in wood from plantation-grown Eucalyptus in China subjected to the continuous and intermittent drying regimes. Pages 326-333 in G. Lianbai, Z. Shouyue, and L. Tao, eds. Proc. 9th International IUFRO Wood Drying Conference, August 21-26, 2005, Nanjing, China.n

Downloads

Published

2007-06-05

Issue

Section

Research Contributions