Measuring and Simulating the Effects of the Pressing Schedule on the Density Profile Development in Wood-Based Composites
Keywords:
Wood-based composites, MDF, density profile, computer simulation, secondary densificationAbstract
The cross-sectional density profile of wood-based panels has a strong impact on many of its end-use properties. In modern panel manufacture, not only press closure but also changes in mat thickness later in the pressing cycle are of importance for density profile development, particularly in the MDF process. A full-factorial analysis of the effects of the pressing cycle on the density profile is presented, with the factors considered being press-closing time, mat thickness level after first densification, and time of secondary densification. It was found that the mat thickness level after first densification dictates the density difference between surface and core regions. For pressing schedules that include a second densification step, intermediate density maxima appear, with magnitude and position of the intermediate density peaks being determined mainly by the first density level and the time span between press closure and final densification. Computer simulations are used to link the density variations to the conditions of local temperature and moisture content during pressing.References
Bismarck Cv (1974) Zur optimierung des spanplattenpressens. Herstellung harnstoffharzverleimter spanplatten unter anwendung spezieller regelsysteme beim pressen. Holz Zentralblatt 100(80):1247-1249.nBoehme C (1992) Die bedeutung des rohdichteprofils fuer MDF. Holz Roh Werkst 50:18-24.nBuchholzer P (1990) Influence of different compression periods and control programs on the properties of MDF boards. Holz Roh Werkst 48(1):30.nDai C, YU C, Hubert P (2000) Modeling vertical density profile. In wood composites during hot pressing. Proc 5th Pacific Rim Bio-Based Composites Symposium, Canberra, Australia. Pp 220-226.nFahrni F (1956) Das Verpressen von Spanplatten bei gefeuchteten oder feuchteren Deckspänen. Holz Roh Werkst 14(1):8-10.nHeinemann C (2004) Charakterisierung der aushärtung von aminoharzen in einer holzpartikelmatrix durch evaluierung von festigkeiten und reaktionkinetik. PhD Thesis, Universität Hamburg. 237 ppnHumphrey PE (1994) Engineering composites from oriented natural fibres: A strategy. The Chemistry and Processing of Wood and Plant Fibrous Materials. In Proc of the Cellucon Conference, Bangor, U. K. Pp 213-220.nKehr E, Schoelzel S (1967) Untersuchungen über das pressdiagramm zur herstellung von spanplatten. 2. Mitteilung. Einfluss von spanfeuchte, schliessgeschwindigkeit und pressdruck auf die verdichtungscharakteristik beim heisspressen von spanplatten. Holztechnologie 8(3): 177-181.nKollmann F (1957) Über den einfluß von feuchtigkeit-sunterschieden im spangut vor dem verpressen auf die eigenschaften von holzspanplatten. Holz Roh Werkst 15(1):35-44.nMay H-A (1977) Zur mechanik der holzspanplatten unter besonderer berücksichtigung der rohdichte-differenzierung und rohstoffzusammensetzung. Holz Roh Werkst 35(10):385-387.nMay H-A (1983a) Zusammenhänge zwischen eigenschaften, rohstoffkomponenten und dem dichteprofil von spanplatten Teil 4: Einflüsse der dichteunterschiede und rohstoffe auf die zugfestigkeit senkrecht zur plattenebene und die scherfestigkeit. Holz Roh Werkst 41(7):271-275.nMay H-A (1983b) Zusammenhänge zwischen eigenschaften, rohstoffkomponenten und dem dichteprofil von spanplatten Tell 5. Einflüsse der dichteprofile und rohstoffe auf biege-E-modul und biegefestigkeit. Holz Roh Werkst 41(9):369-374.nPichelin F, Pizzi A, Fruehwald A, Triboulot P (2001) Exterior OSB preparation technology at high moisture content—Part 1: Transfer mechanisms and pressing parameters. Holz Roh Werkst 59(4):256-265.nPlath E, Schnitzler E (1974) Das rohdichteprofil als beurteilungsmerkmal von spanplatten. Holz Roh Werkst 32(11):443-449.nRen S (1991) Thermo-hygro rheological behavior of materials used in the manufacture of wood-based composites. PhD Thesis, Oregon State Univ. 226 pp.nRuf C (2003) Einfluss des Pressprogramms auf das rohdichteprofil von holzwerkstoffen, MS Thesis, Universität Hamburg. 112 ppnSchulte M, Fruehwald A (1996) Some investigations concerning density profile, internal bond and relating failure position of particleboard. Holz Roh Werkst 54:289-294.nSmith DC (1982) Waferboard press closing strategies. Forest Prod J 32(3):40-45.nStrickler MD (1959) Effect of press cycles and moisture content on properties of Douglas-fir flakeboard. Forest Prod J 9(7):203-215.nSuchsland O (1962) The density distribution in flake boards. Quarterly bulletin, Michigan State Univ. Agric Exper Stat 45(1):104-121.nSuchsland O (1967) Behavior of a particleboard mat during the press cycle. Forest Prod J 17(2):51-57.nThoemen H, Haselein CR, Humphrey PE (2006) Modeling the physical processes relevant during hot pressing of wood-based composites. Part II. Rheology. Holz Roh Werkst 64(2):125-133.nThoemen H, Heinemann C, Hanvongjirawat W (2004) The virtual hot press: A simulation platform for process optimization and training. Pp 1-13 in: 4th European Wood-Based Panels Symposium. Hannover.nThoemen H, Humphrey PE (1999) The continuous pressing process for wood-based panels: An analytical simulation model. Pp 18-30 in: 3rd Panel Products Symposium. Llandudno.nThoemen H, Humphrey PE (2003) Modeling the continous pressing process for wood-based composites. Wood Fiber Sci 35(3):456-468.nThoemen H, Humphrey PE (2006) Modeling the physical processes relevant during hot pressing of wood-based composites. Part I. Heat and mass transfer. Holz Roh Werkst 64(1): 1-10.nTreusch O, Troger F, Wegener G (2004) Influence of apparent density and adhesive content on density profile of single-layer particleboard. Holz Roh Werkst 62(6):474-475.nVon Haas G (2000) Untersuchungen zur Wärmeleitfähigkeit von Faser- und Spanmatten und Platten. Holzforsch Holzverw 52(5):102-104.nVon Haas G, Fruehwald A (2000) Untersuchungen zum verdichtungsverhalten von faser-, span- und OSB-matten. Holz Roh Werkst 58(5):317-323.nVon Haas G, Fruehwald A (2001) Untersuchungen zum rheologischen verhalten von faser-, span- und OSB-matten. Holz Roh Werkst 58(6):415-418.nVon Haas G, Steffen A, Fruehwald A (1998) Untersuchungen zur Permeabilität von Faser-, Span- und OSB-Matten für Gase. Holz Roh Werkst 56(6):386-392.nWang S, Winistorfer PM (2000) Fundamentals of vertical density profile formation in wood composites. Part II. Methodology of vertical density formation under dynamic conditions. Wood Fiber Sci 32(2):220-238.nWang S, Winistorfer PM, Moschler WW, Helton C (2000) Hotpressing of oriented strandboard by step-closure. Forest Prod J 50(3):28-34.nWang S, Winistorfer PM, Young TM (2004) Fundamentals of vertical density profile formation in wood composites. Part III: MDF density formation during hot-pressing. Wood Fiber Sci 36(1):17-25.nWang S, Winistorfer PM, Young TM, Helton C (2001) Step-closing pressing of medium density fiberboard. Part 1: Influence on the vertical density profile. Holz Roh Werkst 59(1/2): 19-26.nWinistorfer PM, Moschler JWW, Wang S, DePaula E, Bledsoe BL (2000) Fundamentals of vertical density profile formation in wood composites. Part 1. In-situ density measurement of the consolidation process. Wood Fiber Sci 32(2):209-219.nWood Fiber Sci, Young M, Walker E (1996) Modeling and comparing vertical density profiles. Wood Fiber Sci 28(1): 133-141.nWolcott MP, Kamke FA, Dillard DA (1990) Fundamentals of flakeboard manufacture: Viscoelastic behavior of the wood component. Wood Fiber Sci 22(4):345-361.nWolcott MP, Kamke FA, Dillard DA (1994) Fundamental aspects of wood deformation pertaining to manufacture of wood-based composites. Wood Fiber Sci 26(4):496-511.nXu W, Winistorfer PM (1995) Layer thickness swell and layer internal bond of medium density fiberboard and oriented strandboard. Forest Prod J 45(10):67-71.nZombori BG (2001) Modeling the transient effects during the hot-compression of wood-based composites. PhD Thesis, Virginia Tech. 212 pp.n
Downloads
Published
Issue
Section
License
The copyright of an article published in Wood and Fiber Science is transferred to the Society of Wood Science and Technology (for U. S. Government employees: to the extent transferable), effective if and when the article is accepted for publication. This transfer grants the Society of Wood Science and Technology permission to republish all or any part of the article in any form, e.g., reprints for sale, microfiche, proceedings, etc. However, the authors reserve the following as set forth in the Copyright Law:
1. All proprietary rights other than copyright, such as patent rights.
2. The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In the case of whole articles, such third parties must obtain Society of Wood Science and Technology written permission as well. However, the Society may grant rights with respect to Journal issues as a whole.
3. The right to use all or part of this article in future works of their own, such as lectures, press releases, reviews, text books, or reprint books.