Temperature Dependence Of Wood Surface Energy

Authors

  • David W. Gunnells
  • Douglas J. Gardner
  • Michael P. Wolcott

Keywords:

Dynamic contact angle analysis, wood, surface energy, glass transition temperature, differential scanning calorimetry, extractives, surface reorientation

Abstract

A thorough understanding of the wood surface is required to engineer adhesive bonding in composite applications. A surface analysis technique, dynamic contact angle (DCA) analysis, was used to examine the effects of temperature on the wood surface as measured by the contact angle and surface energy. A hydrophobic surface transition was found on the wood surface at 60 C, which coincides with the glass transition of lignin as measured by differential scanning calorimetry. The change in the surface at the glass transition can be attributed to the diffusion of nonpolar molecular groups to the surface. This could be the result of the migration and deposition of extractives, reorientation of macromolecules, or a combination of the two. Similar behavior has been observed in synthetic amorphous polymers. Although the surface of wood is complex, the results indicate that it can be investigated and understood like synthetic polymer materials.

References

Andrade, J. D. 1988. Polymer surface and interface dynamics: An introduction. Pages 1-8 in J. D. Andrade, ed. Polymer surface dynamics. Plenum Press, New York, NY.nAndrade, J. D., and W. Y. Chen. 1986. Probing polymer and interface dynamics. Surface Interface Anal. 8: 253-256.nAndrade, J. D., S. M. Ra, R. N. King, and D. E. Gregonis. 1979. Contact angles at the solid liquid interface. J. Colloid Interface Sci. 72(3): 488-494.nBaszkin, A., M. Nishino, and L. Ter-Minassian-Saraga. 1976. Solid liquid adhesion of oxidized polyethylene films. Effect of temperature. J. Colloid Interface Sci. 54(3): 317-328.nBaszkin, A., M. Nishino, and L. Ter-Minassian-Saraga. 1977. Solid liquid adhesion of oxidized polyethylene films. Effect of temperature on polar forces. J. Colloid Interface Sci. 59(3): 516-524.nCasilla, R. C., S. Chow, and P. R. Steiner. 1981. An immersion technique for studying wood wettability. Wood Sci. Technol. 15: 31-43.nCassie, A. B., and S. Baxter. 1944. Wettability of porous surfaces. Trans. Faraday Soc. 40: 546-550.nChristiansen, A. W. 1990. How overdrying wood reduces its bonding to phenol-formaldehyde adhesives: A critical review of the literature. Part I. Physical responses. Wood Fiber Sci. 22(4): 441-459.nFreeman, H. A. 1959. Relation between physical and chemical properties of wood and adhesion. Forest Prod. J. 12: 451-458.nFunke, V. W., G. E. Hellwig, and A. W. Neumann. 1969. Angewandte Makromoledulere Chemie. 8: 185-193.nGagnon, D. R., and T. J. McCarthy. 1984. Polymer surface reconstruction by diffusion of organic functional groups from and to the surface. J. Appl. Polymer Sci. 29: 4335-4340.nGardner, D. J., N. C. Generalla, D. W. Gunnells, and M. P. Wolcott. 1991. Dynamic wettability of wood. Langmuir 7(11): 2498-2502.nHatakeyama, L., S. Hirose, and H. Hatakeyama. 1983. Differential scanning calorimetric studies on bound water in 1, 4-dioxane acidolysis lignin. Makromolecule Chemie 184: 1265-1274.nHemingway, R. W. 1969. Thermal instability of fats relative to the surface wettability of yellow birch-wood (Betula lutea). Tappi 52(11): 2149-2155.nJhon, M. S., and S. H. Yuk. 1988. Contact angles at polymer water interfaces. Pages 25-44 in J. D. Andrade, ed. Polymer surface dynamics. Plenum Press, New York, NY.nKalnins, M. A., and C. Katzenberger. 1987. Wettability and water repellency of wood: A faster, more convenient method. Wood and cellulosics: Industrial utilization, biotechnology, structure and properties. Ellis Horwood Ltd., West Sussex, England. Chapter 45.nKelley, S. S., T. G. Rials, and W. G. Glasser. 1987. Relaxation behavior of the amorphous components of wood. J. Mater. Sci. 22: 617-624.nKo, V. C., B. D. Ratner, and A. S. Hoffman. 1981. Characterization of hydrophillic-hydrophobic polymeric surfaces by contact angle measurements. J. Colloid Interface Sci. 82(1): 25-37.nLavielle, L. 1988. Orientation phenomenon at polymer-water interfaces. Pages 45-66 in J. D. Andrade, ed. Polymer surface dynamics. Plenum Press, New York, NY.nLavielle, L., and J. Schultz. 1985. Surface properties of graft polyethylene in contact with water. J. Colloid Interface Sci. 106(2): 438-445.nLefebvre, D. R., D. A. Dillard, and T. C. Ward. 1989. A model for the diffusion of moisture in adhesive joints. Part I. Equations governing diffusion. J. Adhesion 27: 1-18.nMoody, R., and M. Ritter. 1990. Structural wood products. Pages 41-52 in Serviceability and Durability of Construction Materials: Proceedings of the 1st Materials Engineering Congress. American Society of Civil Engineers, New York, NY.nNeumann, A. W. 1974. Contact angles and their temperature dependence: Thermodynamic status, measurement, interpretation and application. J. Colloid Interface Sci. 4: 105-191.nNeumann, A. W., and W. Tanner. 1970. The temperature dependence of contact angles—polytetrafluoroethylene/n-decane. J. Colloid Interface Sci. 34(1): 1-8.nOwen, M. J., T. M. Gentle, T. Orbeck, and D. E. Williams. 1988. Dynamic wettability of hydrophobic polymers. Pages 101-110 in J. D. Andrade, ed. Polymer surface dynamics. Plenum Press, New York, NY.nRatner, B. D., and S. C. Yoon. 1988. Polyurethane surfaces: Solvent and temperature induced structural rearrangements. Pages 137-152 in J. D. Andrade, ed. Polymer surface dynamics. Plenum Press, New York, NY.nRowe, J. W., and A. H. Conner. 1979. Extractives in eastern hardwoods—A review. USDA Forest Service General Technical Report FPL-18, USDA Forest Products Laboratory, Madison, WI.nRuckstein, E., and S. V. Gourisankar. 1985. Environmentally induced restructuring of polymer surfaces and its influence on their wetting characteristics in an aqueous environment. J. Colloid Interface Sci. 107(2): 488-502.nSalmén, L. 1984. Viscoelastic properties of in situ lignin under water saturated conditions. J. Mater. Sci. 19: 3090-3096.nSalmén, L. 1990. Thermal expansion of water saturated wood. Holzforschung. 44: 17-19.nTingey, K. G., J. D. Andrade, C. W. McGary, and R. J. Zdrahala. 1988. Surface analysis of commercial biomedical polymers. Pages 153-170 in J. D. Andrade, ed. Polymer surface dynamics. Plenum Press, New York, NY.nWellons, J. D. 1983. The adherends and their preparation for bonding. Adhesive bonding of wood and other structural materials. Pennsylvania State University, University Park, PA. Chapter 3.nYasuda, H., and A. K. Sharma. 1981. Effect of orientation and mobility of polymer molecules at surface on contact angle and its hysteresis. J. Polymer Sci. Polymer Physics Edition. 19: 1285-1291.nYoung, R. A. 1978. Wettability of wood pulp fibers. Wood Fiber Sci. 8(2): 120-128.nYoungquist, J. A., and R. M. Rowell. 1989. Opportunities for combining wood with nonwood materials. Pages 141-157 in T. M. Maloney, ed. Proceedings of the 23 International Particleboard/Composite Materials Symposium. Washington State University, Pullman, WA.nZisman, W. A. 1963. Surface energetics of wetting, spreading, and adhesion. Ind. Eng. Chem. 55(10): 19-38.n

Downloads

Published

2007-06-25

Issue

Section

Research Contributions