Hydrogen Peroxide and Iron: A Proposed System for Decomposition of Wood by Brown-rot Basidiomycetes


  • Jerome W. Koenigs


Pinus taeda, Liquidambar styraciflua, wood decay, weight loss, cellulolysis, depolymerization, lignin solubility


Low concentrations of H2O2 and Fe++ caused rapid weight loss of wood of sweetgum and loblolly pine. The degree of polymerization of cellulose in treated woods decreased rapidly at low weight loss and then diminished gradually. The alkali solubility of exposed woods increased rapidly at low weight loss and was inversely related to the degree of polymerization. The H2O2-Fe system solubilized hemicelluloses of both woods more readily than cellulose. Lignin of sweetgum, but not pine, was changed so that it was solubilized by strong acid hydrolysis. The optimal pH for weight loss was about 3.3 for sweetgum and 3.0 for pine. Wood of both species absorbed much of the available Fe from solution.

The literature suggests that brown-rot is oxidative rather than being strictly hydrolytic. The H2O2-Fe++ system oxidizes cotton cellulose, and it essentially reproduced in wood and wood cellulose, characteristics of brown-rot basidiomycetes. These fungi produce H2O2 from native substrates in wood (Koenigs, 1974) and the optimal pH for degradation. Thus, it is proposed that these fungi may attack cellulose and partly decay wood via an H2O2-Fe++ system.


Alexander, W. J., and R. I. Mitchell. 1949. Rapid measurement of cellulose viscosity by the nitration method. Anal. Chem. 21:1497-1500.nAppenitis, A., H. Erdtman, and B. Leopold. 1951. Studies on lignin. Part V. The decay of spruce wood by brown-rotting fungi. Sven. Kem. Tidskr. 63:195-207.nBarton-Wright, E. G., and J. G. Boswell. 1931. 60. The biochemistry of dry-rot in wood. II. An investigation of the products of decay of spruce wood rotted by Merulius lacrymans.Biochein. J. 25:494-506.nBirkinshaw, J. H., W. P. K. Findlay, and R. A. Webb. 1940. Biochemistry of wood-rotting fungi. II. A study of the acids produced by Coniophora cerebella Pers. Biochemistry 34: 906-916.nBoswell, J. G. 1938. 30. The biochemistry of dry-rot in wood. III. An investigation of the products of the decay of pine wood rotted by Merulius lacrymans.Biochem. J. 32:218-229.nBray, M. W. 1924. Decay of wood and ground-wood pulp. Relation of loss in weight to chemical properties. Paper Trade J. 78:58-60.nBray, M. W., and T. M. Andrews. 1924. Chemical changes of groundwood during decay. Ind. Eng. Chem. 16:137-139.nBray, M. W., and J. A. Staidl. 1922. The chemical changes involved during infection and decay of wood and wood pulp. Ind. Eng. Chem. 14:35-40.nBremmer, J. M. 1965. Total nitrogen. Pages 1149-1178 in C. A. Black, ed. Methods of soil analysis. Part 2. Chemical and microbiological properties.nBrowning, B. L. 1964. The composition and chemical reactions of wood. Pages 57-101 in B. L. Browning, ed. The chemistry of wood. Interscience Publ., New York.nCampbell, W. G. 1952. The biological decomposition of wood. Pages 1061-1116 in L. E. Wise and E. C. Jahn, eds. Wood chemistry. 2nd ed., v. 2, Rheinhold Publ. Corp., New York.nCampbell, W. G., and J. Booth. 1929. LCIV. The effect of partial decay on the alkali solubility of wood. Biochem. J. 23:566-572.nCowling, E. B. 1958. A review of literature on the enzymatic degradation of cellulose and wood. U.S.D.A., For. Prod. Lab. Rep. 2116, 26 pp.nCowling, E. B. 1960. Methods for chemical analysis of decayed wood. U.S.D.A., For. Prod. Lab. Rep. 2177, 24 pp.nCowling, E. B. 1961. Comparative biochemistry of the decay of sweetgum sapwood by whiterot and brown-rot fungi. U.S.D.A., For. Serv. Tech. Bull. 1258, 79 pp.nCowling, E. B., and W. Brown. 1969. Structural features of cellulosic materials in relation to enzymatic hydrolysis. Pages 152-187 in G. J. Hajny and E. T. Reese, eds. Cellulases and their applications. Adv. Chem. Ser. 95.nDavidson, G. F., and H. A. Standing. 1951. Auto-hydrolysis of acidic oxycelluloses. J. Text. Inst. Trans. 42:T141-T144.nEnkvist, T., E. Solin, and U. Maunula. 1954. Studies on pine wood decayed by brown rot. Pap. Puu 36:65-69, 86.nFindlay, W. P. K. 1932. A study of Paxillus panuoides Fr. and its effects upon wood. Ann. Appl. Biol. 19:331-350.nGasgoine, J. A., and M. M. Gasgoine. 1960. Biological degradation of cellulose. Butter-worths, London. 264 pp.nHalliwell, G. 1965. Catalytic decomposition of cellulose under biological conditions. Biochem. J. 95:35-40.nHawley, L. F., and W. G. Campbell. 1927. Effect of partial hydrolysis on the alkali solubility of wood. Ind. Eng. Chem. 19:742-744.nHawley, L. F., L. C. Fleck, and C. A. Richards. 1928. The effect of decay on the chemical composition of wood. Ind. Eng. Chem. 20: 504-507.nHighley, T. L. 1973. Influence of carbon source on cellulase activity of white-rot and brown-rot fungi. Wood Fiber 5:50-58.nImmergut, E. A., and B. G. Rånby. 1956. Heterogeneous acid hydrolysis of native cellulose fibers. Ind. Eng. Chem. 48:1183-1189.nIvanov, V. I., E. D. Kaverzneva, and Z. I. Kuznetsova. 1953. Chemical changes produced in the cellulose macromolecule by oxidizing agents. Communication 8. Chemical changes in cellulose produced by oxidation with hydrogen peroxide. Div. Chem. Sci., Acad. Sci. USSR Bull. No. 2 (Engl. Trans.): 341-350.nKatuščak, S., K. Horský, and Mahdalik. 1971. Oxidation of lignin with oxygen and peroxides. Pap. Puu 54:197-202.nKayama, T. 1961. Chemical studies on decayed wood. I. The chemical composition of decayed wood and some properties of resultant pulps. J. Jap. Wood Res. Soc. 7:161-166.nKayama, T. 1962a. Chemical studies on decayed wood as a raw material for pulp. II. Classification of decay types. J. Jap. Wood Res. Soc. 8:29-31.nKayama, T. 1962b. Chemical studies on decayed wood as a raw material for pulp. III. Chemical changes of wood carbohydrates during decay. J. Jap. Wood Res. Soc. 8:32-37.nKayama, T. 1962c. Chemical studies on decayed wood as a raw material for pulp. V. Progressive changes in degree of polymerization of decayed wood cellulose and effect of decay on degree of polymerization and crystalline region of pulp from decayed wood. J. Jap. Wood Res. Soc. 8:197-203.nKennedy, R. W. 1958. Strength retention in wood decayed to small losses. For. Prod. J. 8:208-314.nKing, N. J. 1968. The degradation of wood cell components by the extracellular enzymes of Coniophom cerebella. Pages 558-564 in A. H. Walters and J. J. Elphick, eds., Biodeterioration of materials; microbiological and allied aspects. Elsevier Publ. Co., New York.nKirk, T. K. 1971. Effects of microorganisms on lignin. Ann. Rev. Phytopathol. 9:185-210.nKirk, T. K., S. Larsson, and G. E. Miksche. 1970. Aromatic hydroxylation resulting from attack of lignin by a brown-rot fungus. Acta Chem. Scand. 24:1470-1472.nKoenigs, J. W. 1972a. Effects of hydrogen peroxide on cellulose and its susceptibility to cellulase. Mater. Org. 7:133-147.nKoenigs, J. W. 1972b. Production of extracellular hydrogen peroxide and peroxidase by wood-rotting fungi. Phytopathology 62:100-110.nKoenigs, J. W. 1973. Physiological characteristics of high- and low-decay capacity isolates of Lenzites trabea in relation to an H2O2-Fe mechanism of cellulolysis in wood. 2nd Int. Congr. Plant Pathol. Abstr. Pap. (No. 0966).nKoenigs, J. W. 1974. Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization and pH changes. Arch. Mikrobiol. 99:129-145.nLeopold, B. 1951. Studies on lignin. VIII. Nitrobenzene oxidation and sulphonation of wood decayed by brown-rotting fungi. Sven. Kem. Tidskr. 63:260-271.nLevi, M. P. 1964. The fungal degradation of wood. J. Inst. Wood Sci. 12:56-66.nLi, L. H., R. M. Flora, and K. W. King. 1965. Individual roles of cellulase components derived from Trichoderma viride. Arch. Biochem. Biophys. 111:439-447.nLindsley, C. H., and M. B. Frank. 1953. Intrinsic viscosity of nitrocellulose related to degree of nitration. Ind. Eng. Chem. 45: 2491-2497.nMandels, M., and E. T. Reese. 1964. Fungal cellulases and the microbial decomposition of cellulosic fabric. Rev. Ind. Microbiol. 5:5-20.nMarian, J. E., and A. Wissing. 1960a. The chemical and mechanical deterioration of wood in contact with iron. Part I. Mechanical deterioration. Sven. Papperstidn. 63: 47-57.nMarian, J. E., and A. Wissing. 1960b. The chemical and mechanical deterioration of wood in contact with iron. Part II. Chemical decomposition. Sven. Papperstidn. 63:98-106.nMcBurney, L. F. 1954. C. Degradation of cellulose. Pages 99-196 in E. Ott, H. M. Spurlin, and M. W. Grafflin, eds. Cellulose and cellulose derivatives. Part 1. Interscience Publ., Inc., New York.nMillett, M. A., W. E. Moore, and J. F. Saeman. 1954. Preparation and properties of hydrocelluloses. Ind. Eng. Chem. 46:1493-1497.nMoody, G. J. 1964. The action of hydrogen peroxide on carbohydrates and related compounds. Adv. Carbohydrate Chem. 19:149-179.nMoore, W. B., and D. B. Johnson. 1967. Procedures for the chemical analysis of wood and wood products. U.S.D.A. For. Prod. Lab., Madison, Wis., not paginated.nNorkrans, B. 1967. Cellulose and cellulolysis. Adv. Appl. Microbiol. 9:91-130.nNorkrans, B., and B. G. Ranby. 1956. Studies of the enzymatic degradation of cellulose. Physiol. Plant. 9:198-211.nPew, J. C. 1957. Properties of powdered wood and isolation of lignin by cellulolytic enzymes. Tappi 40:553-558.nRabanus, A. 1939. Über die Säuer-Produktion von Pilzen und deren Einfluss auf die Wirkung von Holzschutzmitteln. Mitt. Fachaussch. Holzfragen Ver. Deut. Ingen. Deut. Forstver. 23:77-89.nReese, E. T. 1957. Biological degradation of cellulose derivatives. Ind. Eng. Chem. 49:89-93.nReese, E. T., and W. Gilligan. 1954. The swelling factor in cellulose hydrolysis. Text. Res. J. 24:663-669.nReese, E. T., and M. Mandels. 1971. Enzymatic degradation. Pages 1079-1094 in N. M. Bikales and L. Segal, eds. Cellulose and cellulose derivatives. v. 5. Part 5. Wiley-Interscience Publ., New York.nReese, E. T., L. Segal, and V. W. Tripp. 1957. The effect of cellulase on the degree of polymerization of cellulose and hydrocellulose. Text. Res. J. 27:626-632.nRichards, D. B. 1962. Chemical changes in decaying wood. For. Sci. 8:277-282.nSarkanen, K. V., and C. H. Ludwig. 1971. Lignins: occurrence, formation, structure, and reactions. John Wiley and Sons, New York. 916 pp.nSeifert, T. 1962. Die chemische Veränderung der Holzzellwand-Komponenten unter dem Einfluss pflanzlicher und tierischer Schädlinge. 1. Mitteilung Abbau von Pinns sylvestris L. durch Coniophora cerebella Pers. Holzforschung 16:102-113.nSelby, K. B. 1969. The purification and properties of the C1-component of the cellulase complex. Pages 34-52 in G. J. Hajny and E. T. Reese, eds. Cellulases and their applications. Adv. Chem. Ser. 95.nSelby, K. B., and C. C. Maitland. 1967. The cellulase of Trichoderma viride. Biochem. J. 104:716-724.nSharples, A. 1971. Degradation of cellulose and its derivatives. Pages 991-1006 in N. M. Bikales and L. Segal, eds. Cellulose and cellulose derivatives, v. 5, Part 5. Wiley-Interscience Publ., New York.nStone, J. E., A. M. Scallan, E. Donefer, and E. Ahlgren. 1969. Digestibility as a simple function of a molecule of similar size to a cellulase enzyme. Adv. Chem. 95:219-241.nWilcox, W. W. 1968. Changes in wood micro-structure through progressive stages of decay. U. S. For. Serv. Res. Pap. FPL 70, 46 pp.nWood, T. M. 1968. Cellulolytic enzyme system of Trichoderma koningii. Biochem. J. 109: 217-227.n






Research Contributions