Ethylene Glycol/Soda Organosolv Pulping of Olive Tree Trimmings

Authors

  • Luis Jiménez
  • Alejandro Rodríguez
  • Ildefonso Pérez
  • Antonia María Calero
  • José Luis Ferrer

Keywords:

Ethylene glycol, organosolv, soda, pulp, composition, viscosity, olive tree wood

Abstract

This paper reports on the influence of independent variables in the ethylene glycol/soda pulping of olive wood trimmings [viz. cooking temperature (165-195°C) and time (30-90 min), ethylene glycol concentration (5-15%), soda concentration (2.5-7.5%), and liquid/solid ratio (4/1-6/1)], on the yield and viscosity and holocellulose, α-cellulose, and lignin contents of the pulps. By using a central composite factorial design, equations that relate each dependent variable to the different independent variables were obtained that reproduced the experimental results for the dependent variables with errors less than 8%. Obtaining pulp with maximum possible holocellulose content (78.9%), α-cellulose content (61.8%), and viscosity (426.8 mL/g), in addition to the minimum possible lignin content (19.1%), entails using high ethylene glycol and soda concentrations (15% and 7.5%, respectively), a long cooking time (90 min), and a low liquid/solid ratio (4/1). A high temperature (195°C) is also required to maximize the holocellulose and α-cellulose contents and viscosity, and one of 175°C to minimize that of lignin. On the other hand, the maximum yield (59.4%) is obtained by using a long cooking time (90 min) and low values of the other operating variables. The use of intermediate operating conditions (viz. a temperature of 187.5°C, an ethylene glycol concentration of 15.0%, a soda concentration of 7.5%, a liquid/solid ratio of 4/1, and a cooking time of 30 min) results in a yield, holocellulose content, α-cellulose content, lignin content, and viscosity values (52.2%, 76.5%, 58.8%, 20.40%, and 352.7 ml/g, respectively) that differ by only 12.1%, 3.0%, 4.9%, 6.8%, and 17.4% from the respective optimum values, all with substantial savings on power consumption and immobilized capital in commercial operations. The strength-related properties of this pulp can be improved with an appropriate refining treatment.

References

Abad, S., J. L. Alonso, V. Santos, and J. C. Parajó. 1997. Furfural from wood in catalyzed acetic-acid media. A mathematical assessment. Bioresource Technol.62(3):115-122.nAnuario de Estadística Agrario. 1999. Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain.nBotello, J. I., M. A. Gilarranz, F. Rodríguez, and M. Oliet. 1999a. Preliminary-study on products distribution in alcohol pulping of Eucalyptus-globulus.J. Chemical Technol. Biotechnol.74(2):141-148.nBotello, J. I. 1999b. Recovery of solvent and by-products from organosolv black liquor. Separation Sci. Technol.34(12): 2431-2445.nCox, L. A., and H. L. Worster. 1971. An assessment of some sulfur-free chemical pulping processes. TAPPI J.54 (11):1890-1892.nDixon, J. P. 1988. BMDP statistical software manual. University of California Press, Berkeley, CA.nDraper, N., and H. Smith. 1981. Applied regression analysis. Wiley, New York, NY.nGilarranz, M. A., M. Oliet, F. Rodríguez, and J. Tijero. 1998. Ethanol-water pulping. Cooking variables optimization. Canadian J. Chem. Eng.76(2):253-260.nGilarranz, M. A., M. Oliet, F. Rodríguez, and J. Tijero. 1999. Methanol-based pulping of Eucalytus globulus. Canadian J. Chem. Eng.77(3):515-521.nHergert, H. L. 1998. Developments in organosolv pulping. An overview. Pages 5-67 in R. A. Young and M. Akhtar, eds. Environmental Friendly Technologies for the Pulp and Paper Industry. John Wiley and Sons Inc., New York, NY.nJiménez, L., E. Navarro, I. Pérez, and F. Maestre. 1997a. Disponibilidad, almacenamiento y caracterización de residuos agrícolas para la fabricación de pastas celulósicas para papel. Investigación y Técnica del Papel 131:130-152.nJiménez, L., F. Maestre, and I. Pérez. 1997b. Disolventes orgánicos para la obtención de pastas de celulosa. Revisión bibliográfica. Afinidad44(467):45-50.nJiménez, L., M. J. De la Torre, F. Maestre, J. L. Ferrer, and I. Pérez. 1997c. Organosolv pulping of wheat straw by use of phenol. Bioresource Technol.60(3):199-205.nJiménez, L., F. Maestre, and M. J. De la Tore. 1997d. Organosolv pulping of wheat straw by use of methanolwater. Tappi J.80(12):248-154.nJiménez, L., M. J. De la Torre, J. L. Ferrer, J. L., Bonilla, and I. Pérez. 1998a. Obtención de pastas de celulosa utilizando mezclas de etanol-agua. Afinidad55(474): 133-138.nJiménez, L., J. L. Bonilla, and J. L Ferrer. 1998b. Organosolv pulping of wheat straw by use of acetone-water mixtures. Process Biochem.33(1):229-238.nJiménez, L., F. Maestre, J.L. Ferrer, and I. Pérez. 1998c. Delignification of wheat straw by use of low-molecularweight organic acids. Holzforschung52(2):191-196.nJiménez, L., F. Maestre, and I. Pérez. 1999a. Use of butanolwater mixtures for making wheat straw pulp. Wood Sci. Technol.33, 97-109.nJiménez, L., M. J. De la Torre, J. L. Ferrer, and J. C. García. 1999b. Influence of process variables on the properties of pulp obtained by ethanol pulping of wheat straw. Process Biochem.35, 143-148.nJiménez, L., I. Pérez, M. J. De la Torre, F. López, and J. Ariza, J. 2000. Use of formaldehyde for making wheat straw cellulose pulp. Bioresource Technol.72, 283-288.nJudt, M. 1990. Recent developments in pulp production and their suitability for use in industrial processes in developing countries. Cellulose Sources Exploitation 81-88nLehnen, R., B. Saake, and H. H. Nimz. 2001. Furfural and hydroxymethylfurfural as by-products of formacell pulping. Holzforschung55(2):199-204.nMontane, D., X. Farriol, J. Salvado, P. Jollez, and E. Chornet. 1998. Fractionation of wheat straw by steamexplosion pretreatment and alkali delignification. Cellulose pulp and by-products from hemicellulose and lignin. J. Wood Chem. Technol.18(2):171-191.nMontgomery, D. C. 1991. Diseño y análisis de experimentos. Grupo Editorial Iberoamericana, Mexico.nMore, A., and A. Toraldo. 1989. Algorithms for bound constrained quadratic programing problems. Numerische Mathematik55:377-400.nParajó, J. C., J. L. Alonso, D. Vázquez, and V. Santos. 1993. Optimization of catalysed acetosolv fractionation of pine wood. Holzforschung47(3):188-196.nPaszner, L. 1998. Catalysed alcohol organosolv pulping. Pages 69-100 in R. A. Young and H. Akhtar, eds. Environmental Friendly Technologies for the Pulp and Paper Industry. John Wiley and Sons Inc., New York, NY.nPress, W. H., S. A. Teukolsky, W. T. Vetterling, and B. B. Flannery. 1992. Numerical recipes in C: The art of scientific computing. Cambridge University Press, Cambridge.nTjeerdsma, B. F., F. H. A. Zomers, E. C. Wilkison, and R. Sierra-Alvarez. 1994. Modelling organosolv pulping of hemp. Holzforschung48(5):415-422.nVázquez, G., G. Antorrena, and J. González. 1995. Acetosolv pulping of Eucalyptus globulus wood. 1. The effect of operational variables on pulp yield, pulp lignin content and pulp potential glucose content. Holzforschung4(1):69-74.nVega, A., M. Bao, and J. Lamas. 1997. Application of factorial design to the modeling of organosolv delignification of Miscanthus sinensis (Elephant grass) with phenol and dilute-acid solutions. Bioresouce Technol.61(1):1-7.nWise, L. E., M. Murphy, and A. D'Adieco. 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade J.122(2):35-43.nYawalata, D., and L. Paszner. 1997. NAEM-Catalized ALPULP organosolv pulping of sugarcane rind. Taiwan Sugar 5:24-27 and 6:8-13.n

Downloads

Published

2007-06-05

Issue

Section

Research Contributions