Tensile Properties of Spruce Under Different Conditions

Authors

  • Zoltan Koran

Keywords:

Defibration, separation energy, subnormal temperature, strength, thermal degradation, thermal softening, lignin, hemicellulose

Abstract

The mechanical properties of spruce were studied at various temperatures ranging from-190 C to + 250 C. Diagrams are presented to show how maximum tensile stress, strain. modulus of elasticity. and work-to-maximum load changes as a function of temperature. The fracture energy reaches a maximum value around-40 C and is reduced to a low level at 150 C and over. Tensile stress increases in a linear manner with a decrease in temperature reaching a theoretical maximum at zero Kelvin degree.

References

Asplund, A. 1953. The origin and development of the defibrator process. Sven. Papperstidn. 56(14):550-558.nASTM. 1964. Book of ASTM standards. Part 16. American Society for Testing Materials. D. 143-52:82-84.nAtack, D., W. D. May. E. L. Morris. and R. N. Sproule. 1961. The energy of tensile and cleavage fracture of black spruce. Tappi 44(8):555-567.nAtack, D., W. D. May. E. L. Morris. and R. N. Sproule. 1972. On the characterization of pressurized refinei mechanical pulps. Sven. Papperstidn. 75:89-94.nBoehm, R. M. 1944. Developments in the manufacture of structural products from hydrolyzed wood. Paper Trade J. 118(13):35-38.nComben, A. J. 1964. The effect of low temperatures on the strength and elastic properties of timber. J. Inst. Wood Sci. 3(13):44-55.nForgacs, O. L. 1967. Groundwood evalution: a review of recent developments. Paper Technol. 8(3):232-239.nForgacs, O. L. 1963. The characterization of mechanical pulps. Pulp Paper Mag. Can. 64(C):T-89-T-118.nGreenhill, W. L. 1936. Strength tests perpendicular to the grain of timber at various temperatures and moisture contents. J. Counc. Sci. Ind. Res.(Aust.).9.(4):265-276.nGoring, D. A. I. 1963. Thermal softening of lignin. hemicellulose. and cellulose. Pulp Paper Mag. Can. 64(12):5-517-T-527.nKollmann, F. 1940. The mechanical properties of wood of different moisture content within-200° to + 200† C temperature range. Technical Memorandum National Advisory Committee for Aeronautics. No. 984:1-37.nKoran, Z. 1967. Electron microscopy of radial tracheid surfaces of black spruce separated by tensile failure at various temperatures. Tappi 50(2):60-67.nKoran, Z. 1968. Electron microscopy of tangential tracheid surfaces of black spruce produced by tensile failure at various temperatures. Sven. Papperstidn. 71(17):567-576.nKoran, Z. 1970. Surface structure of thermomechanical pulp fibers studied by electron microscopy. Wood Fiber 2(3):247-258.nKoran, Z., B. V. Kokta, J. L. Valade, and K. N. Law. 1978. Fiber characteristics of masonile pulp. Pulp Paper Mag. Can. 79(3):T-107-T-113.nLagergren, S., S. Rydholm, and L. Stockman. 1957. Studies on the interfibre bonds in wood. Sven. Papperstidn. 60(17):632-644.nLamb, G. E. R. 1960. The efficiency of mechanical pulping processes. Tappi 43(11):939-944.nLamb, G. E. R. 1962. Energy consumption in mechanical pulping. Pulp Paper Mag. Can. 63(3):T-188-T-191.nStamm, A. J. 1956. Thermal degradation of wood cellulose. Ind. Eng. Chem. 48(3):413-417.nStnley, F., and L. W. Rees. 1938. Effect of steaming on the strength of southern yellow pine. Am. Wood Preserv. Assoc. 34:264-396.nStone, J. E. 1955. The rheology of cooked wood. Tappi 38(8):449-459.nYoungs, R. L. 1957. The perpendicular to grain mechanical properties of red oak as related to temperature, moisture content and time. For. Prod. J. 7(10):315-324.n

Downloads

Published

2007-06-28

Issue

Section

Research Contributions