Investigating the Linearity Assumption Between Lumber Grade Mix and Yield Using Design of Experiments (DOE)

Authors

  • Xiaoqiu Zuo
  • Urs Buehlmann
  • R. Edward Thomas

Keywords:

Lumber grade mix, least-cost lumber grade mix, simple linearity, mixture design

Abstract

Solving the least-cost lumber grade mix problem allows dimension mills to minimize the cost of dimension part production. This problem, due to its economic importance, has attracted much attention from researchers and industry in the past. Most solutions used linear programming models and assumed that a simple linear relationship existed between lumber grade mix and yield. However, this assumption has never been verified or rejected with scientific evidence. The objective of this study was to examine whether a linear relationship exists between yield and two- and three-grade lumber combinations using the USDA Forest Service's ROMI-RIP rough mill simulator and a cutting bill created by Buehlmann. The results showed that a simple linear relationship between grade mix and yield exists only for some grade combinations, but not for others. These findings were confirmed by repeating the tests using actual cutting bills from industry. It was observed that cutting bill characteristics, especially part length requirements and the lumber grades involved, are influential in causing a simple linear or nonlinear relationship between grade mix and yield.

References

BC Wood Specialties Group. 1996. The technology of computerized cut-off saws: A buyers and users guide. The Brandon P. Hodges Productivity Center, Raleigh, NC, for BC Wood Specialties Group. Surrey, BC, Canada.nBethel, J. S., and C. Harrell. 1957. The application of linear programming to plywood production and distribution. Forest Prod. J.7(10):221-227.nBrunner, C. C., M. S. White, F. M. Lamb, and J. G. Schroeder. 1989. CORY: A program for determining dimension stock yields. Forest Prod. J.39(2): 23-24.nBuehlmann, U. 1998. Understanding the relationship of lumber yield and cutting bill requirements: A statistical approach. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA. 207 pp.nEnglerth, G. H., and D. R. Schumann. 1969. Charts for calculating dimension yields from hard maple lumber. Res. Pap. FPL-118. USDA Forest Serv., Forest Prod. Lab., Madison, WI. 12 pp.nFasick, C. A., and J. D. Lawrence. 1971. An operations research application to furniture round production. Forest Prod. J.21(4):46-52.nFortney, W. B. 1994. Solving the lumber grade mix problem for a gang rip first layout with automated cross cut. Ph.D. dissertation, The University of Tennessee, Knoxville, TN. 82 pp.nGatchell, C. J., R. E. Thomas, and E. S. Walker. 1998. 1998 data bank for kiln-dried red oak lumber. Gen. Tech. Rep. NE592. USDA Forest Serv. Northeastern Res. Sta., Radnor, PA. 60 pp.nHallock, H. 1980. Cutting yields from standard hardwood lumber grades when gang ripping. Res. Pap. FPL-370. USDA Forest Serv., Forest Prod. Lab., Madison, WI. 13 pp.nHanover, S. L., W. L. Hafley, A. G. Mullin, and R. K. Perrin. 1973. Linear programming and sensitivity analysis for hardwood dimension production. Forest Prod. J.23(11):47-50.nHarding, O. V. 1991. Development of a decision software system to compare rip-first and crosscut-first yields. Ph.D. dissertation, Mississippi State University, Mississippi State, MS. 145 pp.nHarding, O. V., and P. H. Steele. 1997. RIP-X: Decision software to compare crosscut-first and rip-first rough mill systems. Wood Sci. Technol.31(5):367-381.nHoff, K. G. 2000. Limitations of lumber-yield nomograms for predicting lumber requirements. Gen. Tech. Rep. NE-270. USDA Forest Serv., Northeastern Res. Sta., Radnor, PA. 8 pp.nKoenigsberg, E. 1960. Applying linear programming to the plywood industry. Forest Prod. J.10(9):481-486.nKuehl, R. O. 2000. Design of experiments: Statistical principles of research design and analysis. 2nd ed. Duxbury Press, Pacific Grove, CA. 666 pp.nLawson, P. S, R. E. Thomas, and E. S. Walker. 1996. Optigrami V2 user's guide. Gen. Tech. Rep. NE-222. USDA Forest Serv., Northeastern Forest Exp. Sta., Radnor, PA. 46 pp.nMcKillop, W., and S. Nielson. 1968. Planning sawmill production and inventory using linear programming. Forest Prod. J.18(2):29-34.nMartens, D. G. 1986a. Produce yellow poplar furniture dimension at minimum cost using YELLPOP. Report Pap. NE-592. USDA Forest Serv., Northeastern Forest Exp. Sta., Broomall, PA. 15 pp.nMartens, D. G. 1986b. Reduce dimension costs by using Walnut. Research Pap. NE-586. USDA Forest Serv., Northeastern Forest Exp. Sta., Broomall, PA. 10 pp.nMartens, D. G., and R. L. Nevel. 1985. Optigrami: optimum lumber grade mix program for hardwood dimension parts. Res. Pap. NE-563. USDA Forest Service, Northeastern Forest Exp. Sta., Broomall, PA. 6 pp.nNational Hardwood Lumber Association (NHLA). 1998. Rules for the measurement and inspection of hardwood and cypress. Memphis, TN. 136 pp.nPenick, E. B. 1968. A linear programming application to machine loading in a furniture plant. Forest Prod. J.18(2):29-34.nRaming, K. D. 1968. Linear programming for the plywood mix problem. Forest Prod. J.18(4):98-101.nSchumann, D. R. 1971. Dimension yields from black walnut lumber. Res. Pap. FPL-162. USDA Forest Serv., Forest Prod. Lab., Madison, WI. 16 pp.nSchumann, D. R. 1972. Dimension yields from alder lumber. Res. Pap. FPL-170. USDA Forest Serv., Forest Prod. Lab., Madison, WI. 12 pp.nSchumann, D. R., and G. H. Englerth. 1967. Yields of random-width dimension form 4/4 hard maple lumber. Res. Pap. FPL-81. USDA Forest Serv., Forest Prod. Lab., Madison, WI. 12 pp.nSteele, P. H., B. G. Warren, and J. P. O'Neill. 1990. Rough mill CostCutter: User's manual. Miss. Forest Prod. Util. Lab., Miss. State Univ., Mississippi, MS.nSuter, W. C., and J. A. Calloway. 1994. Rough mill policies and practices examined by a multiple-criteria goal program called ROMGOP. Forest Prod. J.44(10):19-28.nThomas, R. J. 1962. The rough-end yield research program. Forest Prod. J.12(11):236-237.nThomas, R. J. 1965. Analysis of yield of dimension stock from standard lumber grades. Forest Prod. J.15(7): 285-288.nThomas, R. E. 1996a. ROMI-RIP: an analysis tool for rip-first rough mill operations. Forest Prod. J.46(2):57-60.nThomas, R. E. 1996b. Prioritizing parts from cutting bills when gang-ripping first. Forest Prod. J.46(10):61-66.nThomas, R. E. 1998. ROMI-CROSS: an analysis tool for cross-cut first rough mill operations. Forest Prod. J.48(3):68-72.nThomas, R. E. 1999. ROMI-RIP version 2.0: a new analysis tool for rip-first rough mill operations. Forest Prod. J.49(5):35-40.nThomas, R. E., and U. Buehlmann. 2002. Validation of the ROMI-RIP rough mill simulator. Forest Prod. J.52(2):23-29.nThomas, R. E., C. J. Gatchell, and E. S. Walker. 1994. User's guide to AGARIS: Advanced GAng RIp Simulator. General Technical Report NE-192. USDA Forest Service, Northeastern Forest Exp. Sta., Radnor, PA. 54 pp.nTimson, F. G., and D. G. Martens. 1990. OPTIMGRAMI for PC's: User's manual (Version 1.0). Gen. Tech. Rep. NE-143. USDA Forest Serv., Northeastern Forest Exp. Sta., Radnor, PA. 64 pp.nWengert, E. M., and F. M. Lamb. 1994. A handbook for improving quality and efficiency in rough mill operations: practical guidelines, examples, and ideas. R. C. Byrd Hardwood Tech. Center, Princeton, WV.nWiedenbeck, J., J. Brown, N. Bennett, and E. Rast. 2003. Hardwood lumber widths and grades used by the furniture and cabinet industries: results of a 14-mill survey. Forest Prod. J.53(4):72-80.nWodzinski, C., and E. Hahm. 1966. A computer program to determine yields of lumber. USDA Forest Serv., FPL Unnumbered Publ., Forest Products Lab., Madison, WI. 107 pp.nWinston, W. L. 1994. Operations research: Applications and algorithms. 3rd ed. Duxbury Press, Belmont, CA. 54 pp.n

Downloads

Published

2007-06-05

Issue

Section

Research Contributions