Longitudinal Shear Properties of European Larch Wood Related to Cell-Wall Structure
Keywords:
Cellulose, compression wood, larch (<i>Larix decidua</i> Mill.), lignin, microfibril angle, Mode II, normal wood, shear modulus, shear strengthAbstract
Using a new method to determine the longitudinal shear modulus (G) and shear strength (τ) of solid wood in a single test, the observed shear properties of normal (NW) and compression wood (CW) of larch samples were related to their microstructure, i.e., density, microfibril angle (MFA), and lignin content. To estimate the effective G of the solid cell wall, a semi-empirical model, which calculates G on the basis of porosity by extrapolation from experimental data, was used. For comparison, the effective G was derived from an analytical model, which considers the cell wall as a unidirectional laminate consisting of fiber and matrix material. The analytical model proved that the effect of increased MFA and higher lignin content on G in CW balance each other to a large degree. The effective G of the cell wall calculated by the analytical unidirectional laminate model was close to the estimate of the effective cell wall G performed by extrapolation from experimental data. Both models and mechanical test results demonstrated that effects of variability in cell-wall ultrastructure on G are minor, compared to effects of porosity and density, respectively. A multivariate regression model combining G and density showed that a good estimate of τ can be achieved using these input data.References
American Society of Testing and Materials (ASTM). 1992a. Standard Methods of Testing Small Clear Specimens of Timber. ASTM D 143-83. Vol. 04.09. Wood. ASTM, West Conshohocken, PA.nAmerican Society of Testing and Materials (ASTM). 1992b. Standard Test Method for Shear Modulus of Plywood. ASTM D 3044-76. Vol. 04.09. Wood. ASTM, West Conshohocken, PA.nAmerican Society of Testing and Materials (ASTM). 1992c. Standard Test Methods for Evaluation Properties of Wood-Base Fiber and Particle Panel Materials. Interlaminar Shear. ASTM D 1037-91. Vol. 04.09. Wood. ASTM, West Conshokocken, PA.nBailey, I., W., and M. R. Vestal. 1937. The orientation of cellulose in the secondary wall of tracheary cells. J. Arnold Arboretum15(3): 185-208.nBateman, J. H., M. O. Hunt, and C. T. Sun. 1990. New interlaminar shear test for structuaral wood composites. Forest Prod. J.40(3):9-14.nBergander, A. 2001. Local variability in chemical and physical properties of spruce wood fiber. Doctoral thesis. Royal Institute of Technology, Department of Pulp and Paper Chemistry and Technology, Stockholm, Sweden.nBergander, A., and L. Salmén. 2000. Variations in transverse fibre wall properties: Relations between elastic properties and Structure. Holzforschung54:654-660.nBergander, A., and L. Salmén. 2002 cell-wall properties and their effects on the mechanical properties of fibers. J. Mat. Sci.37:151-156.nBiblis, E. J., and J. D. J. Fitzgerald. 1970. Shear properties of loblolly pine growth zones. Wood Sci.2(4): 193-202.nBodig, J., and R. A. Jayne. 1982. Mechanics of wood and wood composites. Van Nostrand Reinhold Company Inc., New York, NY.nCôté, W. A. 1981. Ultrastructure-Critical domain for wood behavior. Wood Sci. Technol.15(1): 1-29nDaniel, M.D., and O. Ishai. 1994. Elastic behavior of unidirectional lamina. Pages 37-84 in M. D. Daniel and O. Ishai, Engineering Mechanics of Composite Materials. Oxford University Press, New York, NY.nDin 4074. 1989. Strength grading of coniferous wood. Normenausschuβ Holzwirtschaft und Möbel und Normenausschuβ Maschinenbau im DIN.nDin 52187. 1979. Testing of wood: Determination of ultimate shearing stress parallel to grain. Normenausschuβ Holz im DIN.nDivos, F., T. Tanaka, H. Nagao, and H. Kato. 1998. Determination of shear modulus on construction size timber. Wood Sci. Technol.32:393-402.nDonaldson, L. A. 1991. The use of pit apertures as windows to measure microfibril angle in chemical pulp fibers. Wood Fiber Sci.23(2):290-295.nDonaldson, L. A. 1992. Within- and between-tree variation in microfibril angle in Pinus radiata.NJ For. Sci.22(1): 77-86.nEn 408. 1999. Timber structures—Structural timber and glued laminated timber—Determination of some physical and mechanical properties. Fachnormenausschuβ 012 Holzbau.nEn 789. 2002. Timber structures—Test methods—Determination of mechanical properties of wood based panels. Fachnormenausschuβ 012 Holzbau.nFengel, D., and M. Stoll. 1973. Über die Veränderung des Zellquerschnitts, der Dicke der Zellwand und der Wandschichten von Fichtenholz-Tracheiden innerhalb eines Jahrringes. Holzforschung.27(1): 1-7.nFengel, D., and Wegener. 1984. Wood—Chemistry, ultrastructure, reactions. Walter de Gryter Berlin—NewYork.nForest Products Laboratory. 1999. Wood Handbook—Wood as an Engineering Material. USDA, Forest Serv., Forest Prod. Lab. Madison, WI.nGindl, W. 2002. Comparing mechanical properties of normal and compression wood in Norway spruce: The role of lignin in compression parallel to the grain. Holzforschung56:395-401.nHalpin, J. C., and J. L. Kardos. 1976. The Halpin-Tsai equations: A review. Polym. Eng. Sci.16:344-352.nHuang, C.-L., N. P. Kutscha, G. J. Leaf, and R. A. Megrawet. 1997. Microfibril Angle in Wood. Pages 177-205 in B.G. Butterfield, ed. Proc. of the IAWA/IUFRO International Workshop on the Significance of Microfibril Angle to Wood Quality, Westport, New Zealand.nJanowiak, J. J., and R. F. Pellerin. 1991. Iosipecu shear test apparatus applied to wood composites. Wood Fiber Sci.23(3): 410-418.nKeenan, F. J., and K. A. Selby. 1973. The shear strength of Douglas-fir glued-laminated timber beams. Toronto, Department of Civil Engineering. University of Toronto. Ontario, CAN.nKellogg, R. M., C. B. R. Sastry, and R. W. Wellwood. 1975. Relationships between cell-wall composition and cell-wall density. Wood Fiber7: 170-177.nKeylwerth, R. 1951. Die anisotrope Elastizität des Holzes und der Lagehölzer. Deutscher Ingenieur-Verlage GmbH, Düsseldorf.nKollmann, F., 1951 Technologie des Holzes und der Holzwerkstoffe. Springer-Verlag, Berlin, Göttingen, Heidelberg.nKollmann, F., and W. A. Côté. 1968. Principles of wood science and technology. I Solid wood. Springer-Verlag, New York, NY.nKovàcik, J. 1999. Correlation between Young's modulus and porosity in porous materials. J. Mat. Sci. Letters18: 1007-1010.nKovàcik, J. 2001. Correlation between shear modulus and porosity in porous materials. J. Mat. Sci. Letters20: 1953-1955.nLang, E. M. 1997. An alternative method for shear strength assessment. Forest Prod. J.47(11/12):81-84.nLichtenegger, H., A. Reiterer, S. E. Stanzl-Tschegg, and P. Fratzl. 1999. Variation of cellulose microfibril angles in softwoods and hardwoods—A possible strategy of mechanical optimization. J. Struct. Biol.128:257-269.nLiu, J. Y. 1984. New shear strength test for solid wood. Wood Fiber Sci.16(4):567-574.nLiu, J. Y. 2000. Effects of shear coupling on shear properties of wood. Wood Fiber Sci.32(4):458-465.nMandery, W. L. 1969. Relationship between perpendicular compressive stress and shear strength of wood. Wood Sci.1(3):177-182.nÖnorm B 4100-2. 1997. Holzbau, Holztragwerke—Berechnung und Ausführungen. Fachnormenausschuβ 012 Holzbau. ON.nÖnorm B 3012. 1998. Wood Species. Terms, symbols, and characteristic values. Fachnormenausschuβ p. 87. Holz.nPanshin, A. J., and C. DeZeeuw. 1970. Textbook of wood technology, Vol. I; 3rd ed., McGraw-Hill Book Co., New York.nReiterer, A., H. Lichtenegger, S. Tschegg, and P. Fratzl. 1999. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cellwalls. Phil. Mag.79(9):2173-2184.nRiyanto, D. S., and R. Gupta. 1996. Effect of ring angle on shear strength parallel to the grain of wood. Forest Prod. J.46(7/8):87-92.nSalmén, L., and A. De Ruvo. 1985. A model for the prediction of fiber elasticity. Wood Fiber Sci.17(3): 336-350.nScott, J. A. N., A. R. Procter, B. J. Fergus, and D. A. Gorin. 1969. The application of ultraviolet microscopy to the distribution of lignin in wood. Description and validity of the technique. Wood Sci. Technol.3:73-92.nSell, J. 1989. Eigenschaften und Kenngöβen von Holzarten, by LIGNUM, Schweizerische Arbeitsgemeinschft für das Holz, Zürich.nSenft, J. F., and S. K. Suddarth. 1967. Critical shear stress in light framing lumber. Forest Prod. J.17(12): 48-49.nSzalai, J. 1992. Indirekte Bestimmung der Scherfestigkeit des Holzes mit Hilfe der anisotropen Festigkeitstheorie. Holz Roh-Werkst.50:233-238.nTimell, T. E. 1985. Compression wood in gymnosperms, Volume I. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.nZhang, W., and A. Sliker. 1991. Measuring shear moduli in wood with small tension and compression samples. Wood Fiber Sci.23(1):58-68.n
Downloads
Published
Issue
Section
License
The copyright of an article published in Wood and Fiber Science is transferred to the Society of Wood Science and Technology (for U. S. Government employees: to the extent transferable), effective if and when the article is accepted for publication. This transfer grants the Society of Wood Science and Technology permission to republish all or any part of the article in any form, e.g., reprints for sale, microfiche, proceedings, etc. However, the authors reserve the following as set forth in the Copyright Law:
1. All proprietary rights other than copyright, such as patent rights.
2. The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In the case of whole articles, such third parties must obtain Society of Wood Science and Technology written permission as well. However, the Society may grant rights with respect to Journal issues as a whole.
3. The right to use all or part of this article in future works of their own, such as lectures, press releases, reviews, text books, or reprint books.