Antimicrobial Properties of the Hybrid Copper Nanoparticles-Carboxymethyl Cellulose

Authors

  • Tuhua Zhong
  • Gloria S. Oporto
  • Jacek Jaczynski
  • Adiam T. Tesfai
  • Jim Armstrong

Keywords:

Carboxymethyl cellulose, copper nanoparticles, nanocomposites, antimicrobial cellulose

Abstract

In this study, a simple method to produce a cellulose-based material with antimicrobial properties was developed by introducing copper nanoparticles on carboxymethyl cellulose (CMC) using sodium borohydride as a copper reducing agent. The hybrid material was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). SEM and EDX analysis confirmed the formation of copper nanoparticles within the CMC matrix. TEM indicated a 10- to 20-nm diameter of copper nanoparticles. Antimicrobial properties of the hybrid material were effectively evaluated against the nonpathogenic surrogate of foodborne pathogen Escherichia coli.

References

Anyaogu K, Fedorov A, Neckers D (2008) Synthesis, characterization and antifouling potential of functionalized copper nanoparticles. Langmuir 24(8):4340-4346.nAOAC (1995) Official methods of analysis. 16th ed. Association of Official Analytical Chemists International, Gaithersburg, MD.nBlack JL, Jaczynski J (2006) Temperature effect on inactivation kinetics of Escherichia coli O157:H7 by electron beam in ground beef, chicken breast meat, and trout fillets. J Food Sci 71(6):M221-M227.nCady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: Nano-composites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21(13):2506-2514.nChalise PR, Hotta E, Matak KE, Jaczynski J (2007) Inactivation kinetics of Escherichia coli by pulsed electron beam. J Food Sci 72(7):M280-M285.nCioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zamnonin G, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255-5262.nCushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—Recent developments, risk and regulation. Trends Food Sci Technol 24(1):30-45.nDuncan T (2011) Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1-24.nFerreira T, Rasband W (2012) ImageJ user guide IJ 1.46r. National Institutes of Health, Bethesda, MD. 193 pp. http://imagej.nih.gov/ij/docs/guide/ (14 August 2012). http://imagej.nih.gov/ij/docs/guide/'>http://imagej.nih.gov/ij/docs/guide/nGabbay J, Borkow G, Mishal J, Magen E, Zatcoff R, Shemer-Avni Y (2006) Copper oxide impregnated textiles with potent biocidal activities. J Ind Text 35(4):323-335.nHostynek J, Maibach H (2004) Copper hypersensitivity: Dermatologic aspects. Dermatol Ther 17(4):328-333.nHu Y, Dang W, Liu C, Sun L (2009) Analysis of the effect of copper on the virulence of a pathogenic Edwardsiella tarda strain. Lett Appl Microbiol 50(1):97-103.nJia B, Mei Y, Cheng L, Zhou J, Zhang L (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. Appl Mater Interfaces 4(6):2897-2902.nKanninen P, Johans Ch, Merta J, Kyösti K (2008) Influence of ligand structure on the stability and oxidation of copper nanoparticles. J Colloid Interf Sci 318(1):88-95.nKotelnikova N, Vainio U, Pirkkalainen K, Serimaa R (2007) Novel approaches to metallization of cellulose by reduction of cellulose-incorporated copper and nickel ions. Macromol Symp 254(1):74-79.nLevanduski L, Jaczynski J (2008) Increased resistance of Escherichia coli O157:H7 to electron beam following repetitive irradiation at sub-lethal doses. Int J Food Microbiol 121(3):328-334.nLlorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24(1):19-29.nMallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) Iodine-stabilized Cu nanoparticle chitosan composite for antimicrobial application. Appl Mater Interfaces 4(3):1313-1323.nMary G, Bajpai SK, Chand N (2009) Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. J Appl Polym Sci 113(2):757-766.nNadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules 8(9):2762-2767.nPadalkar S, Capadona JR, Rowan SJ, Weder C, Won YH, Stanciu LA, Moon RJ (2010) Natural biopolymers: Novel templates for the synthesis of nanostructure. Langmuir 26(11):8497-8502.nPang H, Gao F, Lu Q (2009) Morphology effect on anti-bacterial activity of cuprous oxide. Chem Commun 7(9): 1076-1078.nPerelshtein I, Applerot G, Perkas N, Wehrschuetz-sigl E, Hasmann A, Guebitz G, Gedanken A (2009) CuO-cotton nanocomposite: Formation, morphology, and antibacterial activity. Surf Coat Tech 204(1-2):54-57.nPinto R, Neves M, Neto C, Trindale T (2012) Growth and chemical stability of copper nanostructures on cellulosic fibers. Eur J Inorg Chem (31):5043-5049.nRen G, Hu D, Cheng E, Vargas-Reus M, Reip P, Allaker R (2009) Characterization of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587-590.nRuparelia J, Chatterjee A, Duttagupta S, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707-716.nTesfai AT, Beamer SK, Matak KE, Jaczynski J (2011) Radio resistance development of DNA repair deficient Escherichia coli DH5α in ground beef subjected to electron beam at sub-lethal doses. Int J Radiat Biol 87(6):571-578.n

Downloads

Published

2013-04-15

Issue

Section

Research Contributions