Dynamic Mechanical Properties and Microstructure of some Carbonized Hardwoods

Authors

  • P. R. Blankenhorn
  • G. M. Jenkins
  • D. E. Kline

Abstract

Dynamic mechanical properties (DMP) from 100 to 400 K have been determined for black cherry, carbonized at temperatures from 593 to 1173 K in an inert atmosphere. The elastic modulus of a specimen carbonized at 593 K shows a marked decrease with heat treatment, but this trend appears to be reversed as the carbonization temperature is increased. Internal friction data suggest that there are relatively complex relaxations for all specimens. Scanning electron micrographs for carbonized black cherry, birch, ash, and white oak are presented. The amount of cellular integrity that remains after carbonization in an inert atmosphere is displayed. This form of specimen preparation appears to be a very useful method for investigating certain ultrastructural features of wood.

References

Beall, F. C., and H. W. Eickner. 1970. Thermal degradation of wood components: a review of the literature. U.S.D.A. Forest Service Research Paper. FPL 130.nBernier, G. A., and D. E. Kline. 1968. Dynamic mechanical behavior of birch compared with methyl methacrylate impregnated birch from 90° to 475°K. For. Prod. J. 18(4):79-82.nBlankenhorn, P. R. 1972. Dynamie mechanical behavior of black cherry (Prnnus serotina Ehrh.). Ph.D. thesis, the Pennsylvania State University, University Park, Pennsylvania.nJames, W. L. 1961. Internal friction and speed of sound in Douglas fir. For. Prod. J. 11(9): 383-390.nJayne, B. A. 1959. Indices of quality … vibrational properties of wood. For. Prod. J. 9(11):413-416.nJenkins, G. M., and K. Kawamura. 1971. Structure of glassy carbon. Nature 231:175-176.nJohn, W. J., and M. M. Lal. 1964. Dynamic elastic modulus and damping coefficient of some Indian timbers. Ind. J. Physics 38: 401-408.nKanagawa, Y., and T. Yamada. 1970. Influence of carbonization (400°C) on water sorption hysteresis of wood. J. Japan Wood Res. Soc. 16(3):126-129.nKline, D. E. 1956. A recording apparatus for measuring the dynamic mechanical properties of polymers. J. Polymer Sci. 22:449-454.nKline, D. E., R. P. Kreahlinc, and P. R. Blankenhorn. 1972. Dynamic mechanical properties and structure of white ash (Fraxinus americana L.) wood. Advances in Polymer Sci. Eng. Plenum Press, New York: 185-205.nKnudson, R. M., and R. B. Williamson. 1971. Influence of temperature and time upon pyrolysis of untreated and fire retardant treated wood. Wood Sci. Technol. 5(3): 176-189.nKollmann, F. F. P., and J. B. Sachs. 1967. The effects of elevated temperature on certain wood cells. Wood Sci. Technol. 1(1):14-25.nMacKay, G. D. M. 1967. Mechanism of thermal degradation of cellulose: a review of the literature. Canada Department of Forestry and Rural Development, Forestry Department Publication No. 1201, O.D.C. 813.4:1-20.nMcGinnes, E. A., Jr., S. A. Kandeel, and P. S. Szopa. 1971. Some structural changes observed in the transformation of wood into charcoal. Wood and Fiber 3(2):77-83.nSchaffer, E. L. 1970. Elevated temperature effect on the longitudinal mechanical properties of wood. Ph.D. thesis, University of Wisconsin, Madison, Wisconsin.nSinclair, P. M. 1969. Composites: designers work and contemplate. Ind. Res. Oct.: 59-79.nTaylor, R. E., and D. E. Kline. 1967. Internal friction and elastic modulus behavior of vitreous carbon from 4°K to 570°K. Carbon 5:607-612.nTaylor, R. E., D. E. Kline, and P. L. Walker, Jr. 1968. The dynamic mechanical behavior of graphites. Carbon 6:333-347.nWoodward, A. E., and J. A. Sauer. 1965. Mechanical relaxation phenomena, p. 637-723. In D. Fox, M. M. Labes and A. Weissberger (eds.), Physics and chemistry of the organic solid state. Interscience Publishers, New York.n

Downloads

Published

2007-06-05

Issue

Section

Research Contributions