Orienting Lignocellulosic Fibers and Particles by Means of a Magnetic Field

Authors

  • Stefan Zauscher
  • Philip E. Humphrey

Keywords:

Fiber and particle orientation, nickel treatment, magnetic fields, field strength, rotational torque

Abstract

Fiber and particle alignment in composite materials may be used to tailor material and object properties to specific performance requirements. The present research demonstrates that alignment of ferromagnetically modified slender wood particles in magnetic fields is feasible. Magnetic torque, which causes rotation, increases linearly with the amount of magnetic material on particle surfaces. Below magnetic saturation, magnetic torque increases with increasing strength of the applied field; closer to magnetic saturation, torque becomes less dependent on the applied field strength. Magnetic torque maxima occur at field-to-particle axis angles above 45°. Polarity switches of the applied magnetic field increase particle rotation rates and may counter permanent magnetization, which otherwise tends to impede full particle alignment.

References

Brenner, H. 1963. The Stokes resistance to an arbitrary particle. Chem. Eng. Sci. 18(1):1-25.nBrown, W. F. 1962. Magnetostatic principles in ferro-magnetism. In E. P. Wohlfarth, ed. Selected topics in solid state physics, vol. I. North-Holland Publ. Co., Amsterdam, The Netherlands, and Interscience Publishers, New York, NY.nGreen, H. V., T. J. Fox, and A. M. Scallan. 1982. Lumen-loaded paper pulp Pulp Pap. Can. 83(7):39-43.nHappel, J., and H. Brenner. 1965. Low Reynolds number hydrodynamics with special applications to particulate media. Prentice Hall, Englewood Cliffs, NJ.nHatta, H., and S. Yamashita. 1988. Fiber orientation control by means of magnetic moment. J. Compos. Mater. 22:484-500.nHumphrey, P. E. 1995. Engineering composites from oriented natural fibres: A strategy. Pages 213-120 in J. F. Kennedy, G. O. Phillips, and P. A. Williams, eds. Chemistry and processing of wood and plant fibreccs materials. Woodhead Publishing. Abingdon, UK.nJeffery, G. B. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London Ser. A 102(A715):161-179.nJoseph, R. I., and E. Schlömann. 1965. Demagnetizing field in nonellipsoidal bodies. J. Appl. Phys. 36:1579-1593.nKawai, S., and H. Sasaki. 1989. Oriented medium-density fiberboard produced with an eletrostatic feld I. Mo-kuzai Gakkaishi 35:218-226.nKawai, S., H. Sasaki, and M. Norimoto. 1987. Aligning torque generated on wood particles by an electrostatic field I. Mokuzai Gakkaishi 33:872-878.nKelly, A., and G. J. Davies. 1965. The principles of fibre reinforcement of metals. Metall. Rev. 10-37):1-75.nKim, S., and S. J. Karrila. 1991. Microhydrodynamics: Principles and applications. Butterworth-Heinemann, Boston, MA.nKlauditz, W. Von, H. J. Ulbricht, W. Kratz, and A. Buro. 1960. Herstellung und Eigenschaften von Holz-panwerkstoffen mit gerichter Festigkeit. Folz Roh-Werkst. 18:377-385.nKnoblach, G. M. 1989. Using electric fields to control fiber orientation during the manufacturing of composite materials. SAMPE J. 25(6):9-16.nKnoblach, G. M. 1990. Processing electric fields for fiber orientation. Pages 413-424 in S. M. Lee, ed. International encyclopedia of composites, vol. 4. VCH Publishers, New York, NY.nNagasawa, C., Y. Kumagai, and K. Urabe. 1990. Electromagnetic shielding effectiveness of particleboard containing nickel-metalized wood particles in the core layer. Mokuzai Gakkaishi 36:531-537.nNagasawa, C., Y. Kumagai, and K. Urabe. 1991. Electroconductivity and electromagnetic shielding effectiveness of nickel-plated veneer. Mokuzai Gakkaishi 37:158-163.nNagasawa, C., Y. Kumagai, N. Koshizaki, and T. Kanbe. 1992. Changes in electromagnetic shielding propert es of particleboards, made of nickel-plated wood particles formed by various pre-treatment processes. Mokuzai Gakkaishi 38:256-263.nNilakantan, P. 1938. Magnetic anisotropy of naturally occurring substances. Proc. Indian Acad. Sci. Ser. A 7(1):38-49.nOkagawa, A., and S. G. Mason. 1974. Particle behavior in shear and electric fields. VII. Orientation distributions of cylinders. J. Colloid Interface Sci. 47:568-587.nOkagawa, A., A. G. Cox and S. G. Mason. 1974. Particle behavior in shear and electric fields. VI. The microrheology of rigid spheroids. J. Colloid Interface Sci. 47: 537-567.nPulido, O. R., S. Kawai, Y. Yoshida, and H. Sasaki. 1990. Oriented medium-density fiberboard produced with an electrostatic field II. Mokuzai Gakkaishi 36:29-35.nPulido, O. R., H. Sasaki, S. Kawai, and Y. Yoshida. 1991a. Oriented mat-former with high voltage electrode system II. Mokuzai Gakkaishi 37:1167-1176.nPulido, O. R., Y. Yoshida, S. Kawai, and H. Sasaki. 1991b. Aligning torque generated in wood particles by an electrostatic field IV. Mokuzai Gakkaishi 37:135-141.nPulido, O. R., Y. Yoshida, Q. Wang, S. Kawai and H. Sasaki. 1991c. Aligning torque generated in wood particles by an electrostatic field V. Mokuzai Gakkaishi 37:711-718.nRicard, S., and R. H. Marchessault. 1990. Preparation of in situ magnetically loaded cellulose fibers. Pages 319-325 in Materials Research Society Symposium Proceedings, vol. 197. Materials Research Society, Pittsburgh, PA.nRioux, P., S. Ricard, and R. H. Marchessault. 1992. The preparation of magnetic papermaking fibres. J. Pulp Pap. Sci. 18(1):J39-J43.nSchlesinger, M. 1974. The basic principles of electroless deposition. Pages 176-182 in B. N. Chapman and J. C. Anderson, eds. Science and technology of surface coating. Academic Press, London, UK, and Academic Press, New York, NY.nSchwartz, M., and G. O. Mallory. 1976. Effect of heat-treatments or magnetic properties of electroless nickel alloys. J. Electrochem. Soc. 123:606-614.nShine, A. D. 1982. The rotation of suspended ferromagnetic fibers in a magnetic field. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.nSiemens, AG. 1979. The vacuumschmelze handbook. Soft magnetic materials: Fundamentals, alloys, properties, products, applications. R. Boll, ed. Siemens AG, Berlin and Munchen, Germany, and Heyden & Son Ltd. London, UK.nStratton, J. A. 1941. Electromagnetic theory. McGraw-Hill Book Co., Inc., New York, NY.nSuchsland, O., and G. E. Woodson. 1987. Fiberboaid manufacturing practices in the United States. USDA Forest Serv. Agric. Handb. No. 640, Washington, DC.nSutton, W. H. 1970. Principles and methods for fabricating whisker-reinforced composites. Pages 273-342 In A. P. Levitt, ed. Whisker technology. Wiley Interscience, New York, NY.nTalbott, J. W. 1974. Electrically aligned particleboard and fiberboard. Pages 153-182 in T. M. Maloney, ed. Proc. 8th Particleboard Symposium. Washington State Univ., Pullman, WA.nTalbott, J. W., and E. K. Stefanakos. 1972. Aligning forces on wood particles in an electric field. Wood Fiber Sci. 4:193-203.nYamashita, S., H. Hatta, T. Sugano, and K. Murayama. 1989. Fiber orientation control of short fiber composites experiment. J. Compos. Mater. 23(1):32-41.nYoshida, Y., S. Kawai, O. R. Pulido, and H. Sasaki. 1989. Production of oriented particleboard I. Mokuzai Gakkaishi 35:227-233.nYoshida, Y., S., O. R. Pulido, S. Kawai, and H. Sasaki. 1988. Aligning torque generated in wood particles by an electrostatic field II. Mokuzai Gakkaishi 34:401-408.nYoshida, Y., S., O. R. Pulido, S. Kawai, and H. Sasaki. 1990. Aligning torque generated on wood particles by an electrostaric field III. Mokuzai Gakkaishi 36: 523-530.nZauscher, S. 1992. Orienting lignocellulosic fibers*oy means of a magnetic field. M.S. thesis, Oregon State University, Corvallis, OR.nZauscher, S. 1993. Orientation of lignocellulosic fibers in liquid systems by means of an electric field. An experimental approach. Unpublished report for the USDA Forest Products Lab., Madison, WI.n

Downloads

Published

2007-06-19

Issue

Section

Research Contributions