Heartwood Formation and Natural Durability—A Review
Keywords:
Decay resistance, extractives, heartwood, natural durability, sapwoodAbstract
This paper reviews recent literature on the formation of heartwood and on the components that affect natural durability. It includes discussion about the function of heartwood in living trees, factors influencing the natural durability of heartwood, the process of heartwood formation, and variations in heartwood quantity and quality. Heartwood formation is a regular occurrence in tree stems, and heartwood may have many different properties from sapwood, including natural decay resistance. A greater understanding of the heartwood formation process could allow control of heartwood production. Recent research involving enzymatic analyses have provided valuable insight into the biochemical processes involved in heartwood formation. Further study of the role natural durability plays in living trees would help to bring together many of the disparate strands of research relating to heartwood.References
American Society for Testing and Materials (ASTM). 1993. Standard method of accelerated laboratory testing of natural decay resistance of wood. ASTM D 2017. Pages 344-348 in Annual Book of ASTM Standards, vol. 4.09. Philadelphia, PA.nAnderson, A. B., T. C. Scheffer, and C. G. Duncan. 1962. Phenolics and wood durability. Pages 81-92 in V. C. Runeckles, ed. Plant phenolics and Their Industrial Significance: Plant Phenolics Group of North America Symposium, August 24-5, 1962, Oregon State University, Corvallis, OR. Plant Phenolics Group of North America, Montreal, Quebec, Canada. 103 pp.nAnderson, A. B., T. C. Scheffer, and C. G. Duncan. 1963. The chemistry of decay resistance and its decrease with heartwood aging in incense cedar. Holzforschung17(1):1-5.nAndrews, J. A., and T. G. Siccama. 1995. Retranslocation of calcium and magnesium at the heartwood-sapwood boundary of Atlantic white cedar. Ecology76(2):659-663.nAndrews, J. A., and T. G. Siccama., and K. A. Vogt. 1999. The effect of soil nutrient availability on retranslocation of Ca, Mg and K from senescing sapwood in Atlantic white cedar. Plant Soil208:117-123.nAttiwill, P. M. 1980. Nutrient cycling in a Eucalyptus obliqua (L'Herit.) Forest. IV. Nutrient uptake and nutrient return. Aust. J. Bot.28:199-222.nBamber, R. K. 1976. Heartwood, its function and formation. Wood Sci. Technol.10:1-8.nBamber, R. K., and K. Fukazawa. 1985. Sapwood and heart-wood: A review. Forestry Abstr.46:567-580.nBaqui, S. A., and J. J. Shah. 1985. Histoenzymatic studies in wood of Acacia auriculiformis during heartwood formation. Holzforschung39(6):311-320.nBauch, J. 1990. Wood structure and wood quality of trees subjected to air pollution. Subplenary Session "Challenge of Air Pollution to Forest Sciences", Pages 141-150 in Proc., XIX IUFRO World Congress, Science in Forestry, August 5-11, 1990, Montreal, Quebec, Canada. International Union of Forestry Research Organizations, Huss, Quebec, Canada.nBell, A. A. 1980. The time sequence of defense. Pages 53-73 in J. G. Horsfall and E. B. Cowling, eds. Plant disease: An advanced treatise, vol. 5. How plants defend themselves. Academic Press, New York, NY. 534 pp.nBergstrom, B. 2000. Aspects on heartwood formation in Scots pine. Ph.D. thesis. Acta Univ. Agric. Suecia Silvestria. 129 pp.nBergstrom, B., G. Gustafsson, R. Gref, and A. Ericsson. 1999. Seasonal changes of pinosylvin distribution in the sapwood/heartwood boundary on Pinus sylvestris. Trees14:65-71.nBerthier, S., A. D. Kokutse, A. Stokes, and T. Fourcaud. 2001. Irregular heartwood formation in maritime pine (Pinus pinaster Ait): Consequences for biomechanical and hydraulic tree functioning. Ann. Bot.87:19-25.nBjorklund, K. 1999. Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data. Silva Fenn.33(2):119-129.nBlanchette, R. A., J. R Obst, and T. E. Timell. 1994. Biodegradation of compression wood and tension wood by white and brown rot fungi. Holzforschung48(Suppl.):34-42.nBoddy, L. 1992. Microenvironmental aspects of xylem defenses to wood decay fungi. Pages 96-132 in R. A. Blanchette and A. R. Biggs, eds. Defense mechanisms of woody plants against fungi. Springer-Verlag, Berlin, Germany. 458 pp.nBorghetti, M., W. R. N. Edwards, J. Grace, P. G. Jarvis, and A. Raschi. 1991. The refilling of embolized xylem in Pinus sylvestris L. Plant Cell Environ.14:357-369.nBosshard, H. 1968. On the formation of facultatively colored heartwood in Beilschmiedia tawa. Wood Sci. Technol.2:1-12.nBrix, H., and A. K. Mitchell. 1983. Thinning and nitrogen fertilization effects on sapwood development and relationships of foliage quantity to sapwood area and basal area in Douglas-fir. Can. J. For. Res.13:384-389.nBurtin, P., C. Jay-Allemand, J. Charpentier, and G. Janin. 1998. Natural wood colouring process in Juglans sp. (J. nigra, J. regia and hybrid J. nigra 23 x J. regia) depends on native phenolic compounds accumulated in the transition zone between sapwood and heartwood. Trees12:258-264.nCarlquist, S. J. 1988. Comparative wood anatomy. Springer-Verlag, Berlin, Germany. 358 pp.nCarrodus, B. B. 1971. Carbon dioxide and the formation of heartwood. New Phytol.70:939-943.nCharrier, B., G. Janin, J. P. Haluk, and J. R. Mosedale. 1995. Colour and chemical characteristics of moon rings in oakwood. Holzforschung49:287-292.nChattaway, M. M. 1949. The development of tyloses and secretion of gums in heartwood formation. Aust. J. Sci. Res.B2:227-240.nChui, Y. H., and G. MacKinnon-Peters. 1995. Wood properties of exotic larch grown in eastern Canada and north-eastern United States. For. Chron.71(5):639-646.nCliment, J., L. Gil, and J. Pardos. 1993. Heartwood and sapwood development and its relationship to growth and environment in Pinus canariensis. For. Ecol. Mgmt.59:165-174.nCliment, J., L. Gil, and J. Pardos. 1998. Xylem anatomical traits related to resinous heartwood formation in Pinus canariensis. Trees12:139-145.nCliment, J., J., M. R. Chambel, E. Perez, L. Gil, and J. Pardos. 2002. Relationship between heartwood radius and early radial growth, tree age, and climate in Pinus canariensis. Can J. For. Res.32:103-111.nCôté, W. A. Jr., A. C. Day, B. W. Simson, and T. E. Timell. 1966. Studies on larch arabinogalactan. I. The distribution of arabinogalactan in larch wood. Holzforschung20(6):178-192.nDean, T. J., and J. N. Long. 1986. Variation in sapwood area-leaf area relations within two stands of lodgepole pine. For. Sci.32(3):749-758.nDeBell, J. D., J. J. Morrell, and B. L. Gartner. 1999. Within-stem variation in tropolone content and decay resistance of second-growth western redcedar. For. Sci.45(2):101-107.nDehon, L., J. J. Macheix, and M. Durand. 2001. Involvement of peroxidases in the formation of the brown coloration of heartwood in Juglans nigra. J. Exp. Bot.53(367):303-311nde Kort, I. 1993. Relationships between sapwood amount, latewood percentage, moisture content and crown vitality of Douglas fir (Pseudotsuga menziesii). IAWA J.14(4):413-427.nDellus, V., I. Mila, A. Scalabert, C. Menard, V. Michon, and C. L. M. Herve du Penhoat. 1997. Douglas-fir polyphenols and heartwood formation. Phytochemistry45(8):1573-1578.nde Vries, B. W. L., and T. W. Kuyper. 1990. Lignicolous fungi on yew (Taxus baccata). Z. Mykol.56(1):87-94.nDujesiefken, D., W. Liese, and J. Bauch. 1984. Discolouration in the heartwood of oak-trees. IAWA Bull. n.s.5(2):128-132.nDute, R. R., and A. E. Rushing. 1987. Pit pairs with tori in the wood of Osmanthus americanus (Oleaceae). IAWA Bull. n.s.8(3):237-344n1990. Torus structure and development in the woods of Ulmus alata Michx., Celtis laevigata Willd., and Celtis occidentalis L. IAWA Bull. n.s.11(1):71-83nEricsson, T., and A. Fries. 1999. High heritability for heartwood in north Swedish Scots pine. Theor. Appl. Genet.98:732-735.nEricsson, T., and A. Fries., and R. Gref. 2001. Genetic correlations of heartwood extractives in Pinus sylvestris progeny tests. Forest Genet.8(1):73-79.nEtheridge, D. E. 1962. Selective action of fungus-inhibitory properties of balsam fir heartwood. Can. J. Bot.40:1459-1462.nFahn, A., and N. Arnon. 1962. The living wood fibres of Tamarix aphylla and the changes occurring in them in transition form sapwood to heartwood. New Phytol.62:99-104.nFindlay, W.P.K. 1959. Sap-stain of timber. For. Abstr.20(1):1-7.nFitzgerald, M. G., and M. A. Line. 1990. Some chemical and microbial aspects of decay resistance of Huon pine (Lagarostrobus franklinii (Hook, f.), C.J. Quinn). Holzforschung44(5):335-338.nForsyth, P. G., and T. L. Amburgey. 1992. Prevention of non-microbial sapstains in southern hardwoods. Forest Prod. J.42(3):35-40nFranklin, E. C., M. A. Taras, and D. A. Volkman. 1970. Genetic gains in yields of oleoresin wood extractives and tall oil. Tappi53(12):2302-2304.nFreydl. R. B. 1963. Toxic values of certain extractives of Thuja plicata to four destructive fungi. M.S. thesis, School of Natural Resources, University of Michigan, Ann Arbor, MI. 25 pp.nFrey-Wyssling, A., and H. H. Bosshard. 1959. Cytology of the ray cells in sapwood and heartwood. Holzforschung13:129-137.nFries, A. 1999. Heartwood and sapwood variation in mature provenance trials of Pinus sylvestris. Silvae Genet.48(1):30: 7-14.nFries, A., and T. Ericsson. 1998. Genetic parameters in diallel-crossed Scots pine favor heartwood formation breeding objectives. Can. J. For. Res.28:937-941.nFries, A., and T. Ericsson., and R. Greg. 2000. High heritability of wood extractives in Pinus sylvestris progeny tests. Can J. For. Res.30:1707-1713.nFujii, T., Y. Suzuki, and N. Kuroda. 1997. Bordered pit aspiration in the wood of Cryptomeria japonica in relation to air permeability. IAWA J.18(1):69-76.nFukazawa, K., K. Yamamoto, and S. Ishida. 1980. The season of heartwood formation in genus Pinus. Mitt. Bundesforschungsanst. Forst Holzwirtsch.131:113-131.nGang, D. R., M. Fujita, L. B. Davin, and N. G. Lewis. 1998. The 'abnormal lignins': Mapping heartwood formation through the lignan biosynthetic pathway. Pages 389-421 in N. G. Lewis, and S. Sarkanen, eds. Lignin and lignan biosynthesis. American Chemical Society Symposium Series 697, Washington, DC. 436 pp.nGartner, B. L., ed. 1991. Stem hydraulic properties of vines vs. shrubs of western poison oak, Toxicodendron diversilobum. Oecologia87:180-189.nGartner, B. L., ed. 1995. Plant stems: Physiology and functional morphology. Academic Press. Inc. San Diego, CA. 440 pp.nGartner, B. L., J. J. Morrell, C. M. Freitag, and R. Spicer. 1999. Heartwood decay resistance by vertical and radial position in Douglas-fir trees form a young stand. Can. J. For. Res.29:1993-1996.nGerry, E. 1914. Tyloses: Their occurrence and practical significance in some American woods. J. Agric. Res.1(6):445-485.nGominho, J., and H. Pereira. 2000. Variability of heartwood content in plantation-grown Eucalyptus globulus Labill. Wood Fiber Sci.32(2):189-195.nGref, R., and E. Stahl. 1994. Lightwood induction in Pinus sylvestris by means of mechanical wounding. Scand. J. For. Res.9:382-385.nGrier, C. C., and R. H. Waring. 1974. Conifer foliage mass related to sapwood area. For. Sci.20(3):205-206.nGuyette, R. P., B. E. Cutter, and G. S. Henderson. 1992. Inorganic concentrations in the wood of eastern red cedar grown on different sites. Wood Fiber Sci.24(2):133-140.nHarju, A. M., M. Vanalainen, E. Beuker, P. Velling, and H. Viitanen. 2001. Genetic variation in the decay resistance of Scots pine wood against brown rot fungus. Can. J. For. Res.31:1244-1249.nHarris, J. M. 1954. Heartwood formation in Pinus radiata. New Phytol.53:517-524.nHarris, J. M. 1965. Enrichment of radiata pine heartwood with extractives. Proc., IUFRO Section 41 Meeting, October 1965, Melbourne, Australia. Vol. 1:1-17.nHart, J. N. 1981. Role of phytostilbenes in decay and disease resistance. Ann. Rev. Phytopathol.19:437-58.nHauch, S., and E. Magel. 1998. Extractable activities and protein content of sucrose-phosphate synthase, sucrose synthase and neutral invertase in trunk tissues of Robinia pseudoacacia are related to cambial wood production and heartwood formation. Planta207:266-274.nHazenburg, G., and K. C. Yang. 1991a. The relationship of tree age with sapwood and heartwood width in black spruce. Picea mariana (Mill.) B.S.P. Holzforschung45(5):317-320.nHazenburg, G., and K. C. Yang. 1991b. Sapwood/heartwood width relationships with tree age in balsam fir. IAWA Bulletin n.s.12(1):95-99.nHemingway, R., and W. Hillis. 1970. Heartwood formation in living stumps of Douglas-fir. Wood Sci. Technol.4:246-254.nHergert, H. L. 1977. Secondary lignification in conifer trees. Amer. Soc. Symp. Series, Vol. 48, Cellulose Chem. Technol. 227-243.nHillinger, C., W. Holl, and H. Ziegler. 1996. Lipids and lipolytic enzymes in the trunkwood of Robinia pseudoacacia during heartwood formation. Trees10: 376-381.nHillis, W. E. 1972. Formation and properties of some wood extractives. Phytochem.11:1207-1218.nHillis, W. E. 1987. Heartwood and tree exudates. Springer-Verlag, Berlin, Germany. 268 pp.nHillis, W. E., F. R. Humphreys, R. K. Bamber, and A. Carle. 1962. Factors influencing the formation of phloem and heartwood polyphenols, part II. The availability of stored and translocated carbohydrates. Holzforschung16(4):114-121.nHollingsworth, R. G., U. Blum, and F. P. Hain. 1991. The effect of adelgid-altered wood on sapwood conductance of Fraser fir Christmas trees. IAWA12(3):235-239.nHumphreys, F. R., and N. Humphreys. 1966. Starch levels in flooded gum sapwood. Austr. Forest Res.2(1):35-40.nInternational Association of Wood Anatomists (IAWA). 1964. Multilingual glossary of terms used in wood anatomy. Verlagsanstalt Buchdruckerei Konkordia, Winterthur, Switzerland. 186 pp.nJacquiot, M. C. 1947. Effet inhibiteur des tannins sur le development des cultures in vitro du cambium de certains arbres forestiers. Comptes Rendues225(1):434-436.nJorgensen, E. 1962. Observations on the formation of protection wood. For. Chron.38:292-294.nJorgensen, E., and D. Balsillie. 1969. Formation of heartwood phenols in callus tissue cultures of red pine. Can. J. For. Res.47:1015-1016.nJouin, D., M. T. Tollier, and B. Monties. 1988. Lignification of oak wood. I. Lignin determinations in sapwood and heartwood. Cellulose Chem. Technol., 22:231-243.nKamden, D. P. 1994. Fungal decay resistance of aspen blocks treated with heartwood extracts. For. Prod. J.44(1):30-32.nKaufmann, M. R., and R. K. Watkins. 1990. Characteristics of high- and low-vigor lodgepole pine trees in old-growth stands. Tree Physiol.7:239-246.nKimland, B., and T. Norin. 1972. Wood extractives of common spruce, Picea abies (L.) Karst. Sven. Papperstidn.75:403-409nKleist, G., and U. Schmitt. 1999. Evidence of accessory compounds in vessel walls of Sapelli heartwood (Entandrophragma cylindricum) obtained by transmission electron microscopy. Holz Roh Werkst.57:93-95.nKrahmer, R. L., and W. A. Côté Jr. 1963. Changes in coniferous wood cells associated with heartwood formation. Tappi46(1):42-49.nKrapiec, M. 1999. Occurrence of moon rings in oak from Poland during the Holocene. Pages 193-203 in R. Wimmer and R. E. Vetter, eds. Tree-ring analysis, CAB International, New York. NY. 302 pp.nKrilov, A., and W. H. Lasander. 1989. Concentration, distribution and variability of butanol-soluble phenolic compounds in Eucalypt heartwood. Holzforschung43:49-54.nKumar, S. 1971. Causes of natural durability in timber. J. Timber Dev. Assoc. India28(2):1-15.nKuo, M., and D. F. Arganbright 1980. Cellular distribution of extractives in redwood and incense cedar. Holzforschung34:17-22.nLangstrom, B., and C. Hellqvist. 1991. Effects of different pruning regimes on growth and sapwood area of Scots pine. For. Ecol. Mgmt.44:239-254.nLarson, P. R. 1962. A biological approach to wood quality. Tappi45(6):443-448.nLloyd, J. A. 1978. Distribution of extractives in Pinus radiata earlywood and latewood. N. Z. J. For. Sci.8(2):288-294nLong, J. N., F. W. Smith, and D. R. M. Scott. 1981. The role of Douglas-fir stem sapwood and heartwood in the mechanical and physiological support of crowns and development of stem form. Can. J. For. Res.11:459-464.nMagel, E. A. 2000. Biochemistry and physiology of heartwood formation. Pages 363-376 in R. Savidge, J. Barnett, and R. Napier, eds. Cell and molecular biology of wood formation. BIOS Scientific Publishers Ltd, Oxford, UK. 530 pp.nMagel, E. A., A. Drouet, A. C. Claudot, and H. Ziegler. 1991. Formation of heartwood substances in the stem of Robinia pseudoacacia L. Trees5:203-207.nMagel, E. A., C. Jay-Allemand, and H. Ziegler. 1994. Formation of heartwood substances in the stemwood of Robinia pseudoacacia L. II. Distribution of nonstructural carbohydrates and wood extractives across the trunk. Trees8:165-171.nMagel, E. A., B. Monties, A. Drouet, C. Jay-Allemand, and H. Ziegler. 1995. Heartwood formation: Biosynthesis of heartwood extractives and secondary lignification. Pages 35-56 in H. Sandermann, Jr., and M. Bonnet-Masimbert, eds. Proc. Eurosilva—Contribution to forest tree physiology, November 7-20. 2994, Dourdan, France. Institut National de la Recherche Agronomique, Paris, France. 368 pp.nMagel, E. A., C. Hillinger, T. Wagner, and W. Holl. 2001. Oxidative pentose phosphate pathway and pyridince nucleotides in relation to heartwood formation in Robina psuedoacacia L. Phytochem.57:1061-1068.nMargolis, H. A., R. R. Gagnon, D. Pothier, and M. Pineau. 1988. The adjustment of growth, sapwood area, heartwood area, and sapwood saturated permeability of balsam fir after different intensities of pruning. Can. J. For. Res.18:723-727.nMargolis, H. A., R. Oren, D. Whitehead, and M. R. Kaufmann. 1995. Leaf area dynamics of conifer forests. Pages 255-308 in W. K. Smith, and T. M Hinckley, eds. Ecophysiology of coniferous forests. Academic Press, Inc., San Diego. CA. 338 pp.nMattheck, C. 1995. Biomechanical optimum in woody stems. Pages 75-90 in B. L. Gartner, ed. Plant stems: Physiology and functional morphology. CA, Academic Press, Inc., San Diego, 440 pp.nMegraw, R. A. 1986. Douglas-fir wood properties. Pages 81-95 in C. D. Oliver, D. P. Hanley, and J. A. Johnson, eds. Douglas-fir: Stand management for the future. Contribution No. 55, Institute of Forest Resources, University of Washington, Seattle, WA. 388 pp.nMencuccini, M., and J. Grace. 1995. Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiol.15:1-10.nMencuccini, M., J. Grace, and M. Fioravanti. 1997. Biomechanical and hydraulic determinants of tree structure in Scots pine: Anatomical characteristics. Tree Physiol.17:105-113.nMoraes, J. C., R. Zanetti, N. R. Amaral-Castro, J. C. Zanuncio, and H. B. Andrade. 2002. Effect of Eucalyptus species and soil type on infestation of heartwood termites. Sociobiology39(1):145-153nMorita, S., M. Yatagai, and S. Fujita. 1995. Distributions of the extracts and sesquiterpenes in the trunk of Yakusugi (Cryptomeria japonica). Mokuzai Gakkaishi41(10):938-944.nMorling, T., and E. Valinger. 1999. Effects of fertilization and thinning on heartwood area, sapwood area, and growth in Scots pine (Pinus sylvestris L.). Scand. J. For. Res.14:462-469.nMosedale, J. R., B. Charrier, N. Crouch, G. Janin, and P. S. Savill. 1996a. Variation in the composition and content of ellagitannins in the heartwood of European oaks (Quercus robur and Quercus petraea). A comparison of two French forests and variation with heartwood age. Ann. Sci. For.53:1005-1018.nMosedale, J. R., B. Charrier, and G. Janin. 1996b. Genetic control of wood colour, density and heartwood ellagitannin concentration in European oak (Quercus Petraea and Q. Robur). Forestry69(2):111-124.nMurmanis, L. 1975. Formation of tyloses in felled Quercus rubra L. Wood Sci. Technol.9:3-14.nMyre, R., and C. Camiré. 1994. The establishment of stem nutrient distribution zones of European larch and tamarack using principal component analysis. Trees9: 26-34.nNair, M. N. B. 1988. Wood anatomy and heartwood formation in Neem (Azadirachta indica A. Juss.). Bot. J. Linn. Soc.97:79-90.nNair, M. N. B. 1999. Sapwood and heartwood. Pages 149-172 in M. Iqbal, ed. Encyclopedia of plant physiology—The cambial derivatives. Vol. IX, Part 4. Gebrüden Borntrager, Berlin. 363 pp.nNair, M. N. B., and J. J. Shah. 1983. Histochemistry of paraquat treated wood in Azadirachta indica A. Juss. IAWA Bull. n.s.4(4):249-254.nNault, J. 1988. Radial distribution of thujaplicins in old growth and second growth western red cedar (Thuja plicata Donn.). Wood Sci. Technol.22:73-80.nNelson, N. D. 1975. Extractives produced during heartwood formation in relation to amounts of parenchyma in Juglans nigra and Quercus rubra. Can. J. For. Res.5:291-301.nNelson, N. D. 1977. Xylem ethylene, phenol-oxidizing enzymes, and nitrogen and heartwood formation in walnut and cherry. Can. J. Bot.56:626-634.nNobuchi, T., and H. Harada. 1983. Physiological features of the "white zone" of Sugi (Cryptomeria japonica D. Don) cytological structure and moisture content. Mokuzai Gakkaishi29(12):824-832.nNobuchi, T., S. Takahara, and H. Harada. 1979. Studies on the survivial rate of ray parenchyma cells with aging process in coniferous secondary xylem. Bull. Kyoto Univ. For.51:239-246.nNobuchi, T., T. Sato, R. Iwata, and H. Harada. 1984. Season of heartwood formation and related cytological structure of ray parenchyma cells in Robinia pseudoacacia. Mokuzai Gakkaishi30(8):628-636.nNobuchi, T., N. Tokuchi, and H. Harada. 1987a. Variability of heartwood formation and cytological features in broad-leaved trees. Mokuzai Gakkaishi33(7):596-604.nNobuchi, T., K. Takai, and H. Harada. 1987b. Distribution of heartwood phenols in the trunk of sugi (Cryptomeria japonica D. Don) and partial characterization of heartwood formation. Mokuzai Gakkaishi33(2):88-96.nOhsawa, M., Y. Kuroda, K. Katsuya, and H. Takei. 1992. Ability of fungi inhabiting larch trunks with buttrot to utilize wood components in vitro. J. Jpn. For. Soc.74(4):300-307.nOkada, N., Y. Katayama, T. Nobuchi, Y. Ishimaru, and A. Aoki. 1993a. Trace elements in the stems of trees VI. Comparisons of radial distributions among hardwood stems. Mokuzai Gakkaishi39(10):1119-1127.nOkada, N., Y. Katayama, T. Nobuchi, Y. Ishimaru, and A. Aoki. 1993b. Trace elements in the stems of trees V. Comparisons of radial distributions among softwood stems. Mokuzai Gakkaishi39(10):1111-1118.nOnuorah, E. O. 2001. The efficacy of heartwood extractives of Afzelia africana and Erythrophleum suaveolens as wood preservatives. J. Timber Dev. Assoc. India47(1/2):10-26.nPanshin, A. J., and C. de Zeeuw. 1980. Textbook of wood technology. McGraw-Hill, Toronto, Ontario, Canada. 722 pp.nPaques, L. E. 2001. Genetic control of heartwood content in larch. Silvae Genetica.50(2):69-75.nParkin, E. A. 1938. The depletion of starch from timber in relation to attack by Lyctus beetles. II. A preliminary experiment upon the effect of girdling standing oak trees. Forestry12:30-37.nPensar, G. 1967. The distribution and composition of extractives in wood. I. Earlywood and latewood in spruce. Institute Trakemi, Abo Akademi University, Abo, Finland. 27(5):1-31.nPhelps, J., E. A. McGinnes Jr., H. E. Garrett, and G. S. Cox. 1983. Growth-quality evaluation of black walnut wood. Part II—Colour analyses of veneer produced on different sites. Wood Fiber Sci.15(2):177-185.nPolge, H. 1985. Influence de l'elagage sur la duraminisation, la production de bois de tension at quelques autres proprietes du bois de peuplier I 214. Ann. Sci. For.42(3):283-296.nPothier, D., H. P. Margolis, and R. N. Waring. 1989. Patterns of change of saturated sapwood permeability and sapwood conductance with stand development. Can. J. For. Res.19:432-439.nPruyn, M. L., B. L. Gartner, and M. E. Harmon. 2002a. Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest. Tree Physiol.22:105-116.nPruyn, M. L., B. L. Gartner, and M. E. Harmon. 2002b. Within-stem variation of respiration in Pseudotsuga menziesii (Douglas-fir) trees. New Phytol. In press.nRademacher, P., J. Bauch, and J. Puls. 1986. Biological and chemical investigations of the wood from pollution-affected spruce (Picea abies (L.) Karst.). Holzforschung40(6):331-338.nRao, P. S. 1982. Natural durability of woods versus their chemical composition. J. Ind. Acad. Wood Sci.13(1):5-20.nRink, G. 1987. Heartwood color and quantity variation in a young black walnut progeny test. Wood Fiber Sci.19(1):93-100.nRowe, J. W., and A. H. Conner. 1979. Extractives in eastern hardwoods—A review. General Technical Report FPL-18, USDA Forest Serv., Forest Prod. Lab., Madison, WI. 67 pp.nRudman, P. 1963. The causes of natural durability in timber. Part XI. Some tests of the fungi toxicity of wood extractives and related compounds. Holzforschung17(2):54-57.nRudman, P., and E. W. B. Da Costa. 1959. Variation in extractive content and decay resistance in the heartwood of Tectona grandis L.f. J. Inst. Wood Sci.3:33-42.nRyan, M. G. 1989. Sapwood volume for three subalpine conifers: Predictive equations and ecological implications. Can. J. For. Res.19:1397-1401.nRyan, M. G., S. T. Gower, R. M. Hubbard, R. N. Waring, H. L. Gholz, W. P. Cropper Jr., and S. W. Running. 1995. Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia101:133-140.nSaranpaa, P., and W. Holl. 1989. Soluble carbohydrates of Pinus sylvestris sapwood and heartwood. Trees3:138-143.nSargent, C. 1926. Manual of the trees of North America. Houghton Mifflin Company, Boston, MA. 910 pp.nScalabert, A. 1991. Antimicrobial properties of tannins. Phytochem.30(12):3875-3883.nScheffer, T. C., and E. Cowling. 1966. Natural resistance of wood to microbial deterioration. Ann. Rev. Phytopathol.4:147-170.nScheffer, T. C., and J. J. Morrell. 1998. Natural durability of wood: A worldwide checklist of species. Forest Research Laboratory Research Contribution 22, Oregon State University, Corvallis, OR. 58 pp.nSchultz, T. P., T. F. Hubbard Jr., L. Jin, T. H. Fisher, and D.D. Nicholas. 1990. Role of stilbenes in the natural durability of wood: Fungicidal structure-activity relationships. Phytochem.29(5): 1501-1507.nSchultz, T. P., W. B. Harms, T. H. Fisher, K. D. McMurtrey, J. Minn, and D. D. Nicholas. 1995. Durability of angiosperm heartwood: The importance of extractives. Holzforschung49:29-34.nSchultz, T. P., and D. D. Nicholas. 2000. Naturally durable heartwood: Evidence for a proposed dual defensive function of the extractives. Phytochem.54: 47-52.nSellin, A. 1991. Variation in sapwood thickness of Picea abies in Estonia depending on the tree age. Scand. J. For. Res.6:463-469.nSellin, A. 1994. Sapwood-heartwood proportion related to tree diameter, age, and growth rate in Picea abies. Can. J. For. Res.24:1022-1028.nSellin, A. 1996. Sapwood amount in Picea abies (L.) Karst. determined by tree age and radial growth rate. Holzforschung50:291-296.nShain, L. 1995. Stem defense against pathogens. Pages 383-406 in B. L. Gartner, ed. Plant stems: Physiology and functional morphology. Academic Press, San Diego, CA. 440 pp.nShain, L., and W. E. Hillis. 1973. Ethylene production in xylem of Pinus radiata in relation to heartwood formation. Can. J. Bot.51:1331-1335.nShain, L., and J. P. G. Mackay. 1973. Seasonal fluctuation in respiration if aging xylem in relation to heartwood formation in Pinus radiata. Can. J. Bot.51:737-741.nShelburne, V. B., R. L. Hedden, and R. M. Allen. 1993. The effects of site, stand density, and sapwood permeability on the relationship between leaf area and sapwood area in loblolly pine (Pinus taeda L.). For. Ecol. Mgmt.58:193-209.nShigo, A. L. 1984. Compartmentalization: A conceptual framework for understanding how trees grow and defend themselves. Ann. Rev. Phytopathol.22:189-214.nShigo, A. L., and W. E. Hillis. 1973. Heartwood, discolored wood, and microorganisms in living trees. Ann. Rev. Phytopathol.11:197-222.nShinozaki, K., K. Yoda, K. Hozumi, and T. Kira. 1964. A quantitative analysis of plant form—The pipe model theory I. Basic analyses. Japn. J. Ecol.14:97-105.nSjostrom, E. 1993. Wood chemistry: Fundamentals and applications, 2nd ed. Academic Press. San Diego, CA. 293 pp.nSmith, A. L., C. L. Campbell, D. B. Walker, and J. W. Hanover. 1989. Extracts from black locust as wood preservatives: Extraction of decay resistance from black locust heartwood. Holzforschung43:293-296.nSmith, J. H. G., J. Walters, and R. W. Wellwood. 1966. Variation in sapwood thickness of Douglas-fir in relation to tree and section characteristics. For. Sci.1(12):97-103.nSperry, J. S., A. H. Perry, and J. E. M. Sullivan. 1991. Pit membrane degradation and air-embolism formation in aging xylem vessels of Populus tremuloides. J. Exp. Bot. 42(244):1399-1406.nSquillace, A. E., and T. A. Harrington. 1968. Olustee's high-yielders produces 487 bbls. Pine gum per crop for four straight years. Naval Stores Review77(12):4-5.nSquire, G. B., E. P. Swan, and J. W. Wilson. 1967. Intra-increment variation in Douglas fir flavonoids by new technique. Pulp Paper Mag. Can.68:T-431-T-437.nSrinivasan, U., T. Ung, A. Taylor, and P. A. Cooper. 1999. Natural durability and waterborne treatability of tamarack. Forest Prod. J.49(1):82-87.nStewart, C. M. 1966. Excretion and heartwood formation in living trees. Science153:1068-1074.nStokes, A., and S. Berthier. 2001. Eccentric heartwood formation in leaning stems of maritime pine (Pinus pinaster Ait.). For. Ecol. Mgmt.135:115-121.nStreit, W., and D. Fengel. 1994. Heartwood formation in Quebracho colorado: Tannin distribution and penetration of extractives into the cell walls. Holzforschung48:361-367.nTaylor, A. M., and P. A. Cooper. 2002. The effects of pre-harvest girdling on selected properties of red pine, red maple, and eastern larch. Wood Fiber Sci.34(2):212-220.nTorelli, N. 1984. The ecology of discoloured wood as illustrated by beech (Fagus sylvatica L.). IAWA Bull. n.s.5(2):121-127.nUSDA-FS Forest Products Laboratory. 1999. Wood handbook-Wood as an engineering material. Tech. Rep. No. FPL GTR-113, USDA Forest Serv. Forest Prod. Lab., Madison WI. 466 pp.nvan der Kamp, B. J. 1986. Effects of heartwood inhabiting fungi on thujaplicin content and decay resistance of western redcedar (Thuja plicata Donn.). Wood Fiber Sci.18(3):421-427.nVenalainen, M, A. M. Harju, T. Nikkanen, L. Paajanen, P. Velling, and H. Viitanen. 2001. Genetic variation in the decay resistance of Siberian larch (Larix sibirica Ledeb) wood. Holzforschung55:1-6.nVerrall, A. F. 1938. The probable mechanism of the protective action of resin in fire wounds on red pine. J. Forestry36:1231-1233.nWhite, D., C. Beadle, D. Worledge, J. Honeysett, and M. Cherry. 1998. The influence of drought on the relationship between leaf and conducting sapwood area in Eucalyptus globulus and Eucalyptus nitens. Trees12:406-414.nWhitehead, D., W. R. N. Edwards, and P. G. Jarvis. 1984. Conducting sapwood area, foliage area and permeability in mature trees of Picea sitchensis and Pinus contorta. Can. J. For. Res.14:940-947.nWilcox, W. W. 1969. Tolerance of Polyporus amarus to incense cedar heartwood extractives. Forest Products Laboratory. University of California, Berkeley, CA. 15 pp.nWilkes, J. 1991. Heartwood development and its relationship to growth in Pinus radiata. Wood Sci. Technol.25:85-90.nWilkins, A. P. 1991. Sapwood, heartwood and bark thickness of silviculturally treated Eucalyptus grandis. Wood Sci. Technol.25:415-423.nWilkins, A. P., and C. M. Stamp. 1990. Relationship between wood colour, silvicultural treatment and rate of growth in Eucalyptus grandis Hill (Maiden). Wood Sci. Technol.24:297-304.nWilson, B. F. and B. L. Gartner. 2002. Effect of phloem girdling on apical control of branches, growth allocation, and air in wood. Tree Physiol.22:347-353.nWilson, S. E. 1933. Changes in the cell contents of wood and their relationships to the respiration of wood and its resistance to lyctus beetle attack and fungal invasion. Ann. Appl. Biol.10:661-690.nWoeste, K. E. 2002. Heartwood production in a 35-year-old black walnut progeny test. Can. J. For. Res.32:177-181.nYamamoto, K. 1982. Yearly and seasonal process of maturation of ray parenchyma cells in Pinus species. Res. Bull. Coll. Exp. For. Hokkaido Univ. 39:245-296.nYang, K. C. 1992. Survival rate and nuclear irregularity index of sapwood ray parenchyma cells in four tree species. Can. J. For. Res.23:673-679.nYang, K. C., and G. Hazenburg. 1991a. Sapwood and heartwood width relationship to tree age in Pinus banksiana. Can. J. For. Res. 21:521-525.nYang, K. C., and G. Hazenburg. 1991b. Relationship between tree age and sapwood/heartwood width in Populus tremuloides Michx. Wood Fiber Sci.23(2):247-252.nYang, K. C., and G. Hazenburg. 1992. Impact of spacings on sapwood and heartwood thickness in Picea mariana (Mill.) B.S.P. and Picea glauca (Moench.) Voss. Wood Fiber Sci.24(3):330-336.nYang, K. C., Y. S. Chen, C. Chui, and G. Hazenburg. 1994. Formation and vertical distribution of sapwood and heartwood in Cryptomeria japonica D. Don. Trees9:35-40.nZimmermann, M. H. 1983. Failure and "senescence" of xylem function. Pages 98-106 in M. H. Zimmermann, ed. Xylem structure and the ascent of sap. Springer-Verlag, Berlin, Germany. 143 pp.nZobel, B., and J. Jett. 1995. Genetics of wood production. Springer-Verlag, New York, NY. 337 pp.nZwieniecki, M. A., and N. M. Holbrook. 1998. Diurnal variation in xylem hydraulic conductivity in white ash (Fraxinus americana L.), red maple (Acer rubrum L.) and red spruce (Picea rubens Sarg.). Plant Cell Environ.21:1173-1180.n
Downloads
Published
Issue
Section
License
The copyright of an article published in Wood and Fiber Science is transferred to the Society of Wood Science and Technology (for U. S. Government employees: to the extent transferable), effective if and when the article is accepted for publication. This transfer grants the Society of Wood Science and Technology permission to republish all or any part of the article in any form, e.g., reprints for sale, microfiche, proceedings, etc. However, the authors reserve the following as set forth in the Copyright Law:
1. All proprietary rights other than copyright, such as patent rights.
2. The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In the case of whole articles, such third parties must obtain Society of Wood Science and Technology written permission as well. However, the Society may grant rights with respect to Journal issues as a whole.
3. The right to use all or part of this article in future works of their own, such as lectures, press releases, reviews, text books, or reprint books.