Shrinkage and Related Properties of Douglas-Fir Cell Walls


  • J. Thomas Quirk


Specific gravity, cell-wall area, cell-wall thickness, fiber diameter, cell-wall density, lumens, cell perimeters, soft-woods


It is often desirable in veneer or particleboard operations, or in pulping, gluing and especially permeability studies, to use nondestructive sampling techniques to estimate specific gravity or wood behavior in situ.

Two separate optometric measuring techniques are compared for measuring anatomical parameters of intact, extractive-free wood directly. Excellent estimates of wood specific gravity in the green and oven-dry condition, cell-wall area, lumen area, cell-wall thickness, and density in situ are obtained by both methods. In addition, shrinkage in cell area, cell perimeter, tangential and radial dimensional shrinkage of cells, and volumetric shrinkage are obtained from measurements taken from the water-swollen to the oven-dry condition.

Values derived by the two optometric measuring techniques were highly correlated: specific gravity with cell-wall area, basic density with cell-wall thickness.


Barber, N. F. 1968. A theoretical model of shrinking wood. Holzforschung22(4):97-103.nBarber, N. F., and B. A. Meyland. 1964. The anisotropic shrinkage of wood. Holzforschung18(5):146-156.nBarkas, W. W. 1941. Wood-water relationships. VI. The influence of ray cells on shrinkage of wood. Trans. Faraday Soc. 37:535-548.nBoutelje, J. 1962. On shrinkage and change in microscopic void volume during drying, as calculated from measurements on microtome cross-sections of Swedish pine (Pinus sylvestris L.). Svensk Papperstid.65:209-215.nBoyd, J. D. 1974a. Anisotropic shrinkage of wood: Identification of the dominant determinants. Makuzai Gakkaishi20(18):473-482.nBoyd, J. D. 1974b. Relating lignification to microfibril angle differences between tangential and radial faces of all wall layers in wood cells. Drevarsky Výskum19(2):41-53.nBrown, H. P., A. J. Panshin, and C. C. Forsaith, editors. 1949. Chapter 3: The gross features of wood of value in identification. Pages 53-63 in Textbook of wood technology, Vol. 1. McGraw Hill Book Co., Inc., N.Y.nCave, I. D. 1972. A theory of the shrinkage of wood. Wood. Sci. Technol.6(4):284-292.nCave, I. D. 1975. Wood substance as a water-reactive fibre-reinforced composite. J. Microscopy104(Pt. I):47-52.nCave, I. D. 1976. Modeling the structure of the softwood cell wall for computation of mechanical properties. Wood Sci. Technol.10:19-28.nGoggans, J. F. 1962. The correlation, variation, and inheritance of wood properties in loblolly pine (Pinus taeda L.). North Carolina State College, School of Forestry, Tech. Rep. No. 14. 155 pp.nHale, J. D. 1957. The anatomical basis of dimensional changes of wood in response to changes in moisture content. For. Prod. J.7(4):140-144.nKato, H., and K. Nakato. 1968. The transverse anisotropic shrinkage of wood and its relation to the cell wall structure. I. The lignin distribution in the radial and tangential wall of coniferous wood tracheids. Bull. Kyoto Univ. For. No. 40:284-292.nKellogg, R. M., and F. F. Wangaard. 1969. Variation in the cell-wall density of wood. Wood Fiber1(3):180-204.nKelsey, K. E. 1963. A critical review of the relationship between the shrinkage and structure of wood. Div. For. Prod. Tech. Pap. for Australia. No. 28.nKollmann, F. F., and W. A. Côté, Jr. 1968. Principles of wood science and technology, Vol. I. Springer-Verlag, N.Y. 592 pp.nLantican, C. B., and J. F. Hughes. 1973. A rapid method for specimen preparation and for measurement of cell cross-sectional dimensions. IAWA Bull. 1973/74. Pp. 11-18.nMarkwardt, L. J., and T. R. C. Wilson. 1935. Strength and related properties of woods grown in the United States. USDA Tech. Bull. No. 479.nMatsumoto, T. 1950. The anisotropic shrinkage of wood. Bull. Morioka Coll. Agric. and For., Iwate Univ. No. 26:81-88.nMeyland, B. A. 1972. The influence of microfibril angles on the longitudinal shrinkage-moisture content relationship. Wood Sci. Technol.6(4):293-301.nMcIntosh, D. C. 1954. Some aspects of the influence of rays on the shrinkage of wood. J. For. Prod. Res. Soc.4(1):39-42.nMcIntosh, D. C. 1955. The effect of the rays on the radial shrinkage of beech. For. Prod. J.5(1):67-71.nMcIntosh, D. C. 1957. Transverse shrinkage of red oak and beech. For. Prod. J.7(3):114-120.nMörath, E. 1932. Studien über die hygroskopischen Eigenschaften und die Härte der Hölzer. Mitt. Holz. Forschst. Darmstadt.nNakato, K. 1958a. On the cause of the anisotropic shrinkage and swelling of wood. VII. On the anisotropic shrinkage in transverse section of the isolated springwood and summerwood. J. Jap. Wood Res. Soc.4(3):94-100.nNakato, K. 1958b. On the cause of the anisotropic shrinkage and swelling of wood. VIII. On the relationships between the microscopic structure and the anisotropic shrinkage in transverse section. J. Jap. Wood Res. Soc.4(3):100-105.nNakato, K. 1958c. On the cause of the anisotropic shrinkage and swelling in wood. IX. On the relationships between the microscopic structure and the anisotropic shrinkage in transverse section. J. Jap. Wood Res. Soc.4(4):134-141.nNearn, W. T. 1955. Effect of water soluble extractives on the volumetric shrinkage and equilibrium moisture content of eleven tropical and domestic woods. Pennsylvania State University, Agric. Exp. Stn. Bull. No. 598.nPentoney, R. E. 1953. Mechanisms affecting tangential vs. radial shrinkage. J. For. Prod. Res. Soc.3(2):27-32.nQuirk, J. T. 1975. Dot-grid integrating eyepiece: Two sampling techniques for estimating cell wall areas. Wood Sci.8(2):88-91.nQuirk, J. T., and D. M. Smith. 1975. Comparison of Dual-Linear and dot-grid eyepiece methods for estimating wood properties of Douglas-fir. Wood Sci.8(2):92-96.nSchniewind, A. P. 1959. Transverse anisotropy of wood: A function of gross anatomic structure. For. Prod. J.9(10):350-359.nSmith, D. M. 1965. Rapid method of tracheid cross-sectional dimensions of conifers: Its application to specific gravity determinations. For. Prod. J.15(8):325-334.nSmith, D. M., and R. B. Miller. 1964. Methods of measuring and estimating tracheid wall thickness of redwood (Sequoia sempervirens (D. Don.) Endl.). Tappi47(10):600-604.nStamm, A. J. 1946. Passage of liquids, vapors, and dissolved materials through softwoods. USDA Tech. Bull. No. 929.nStamm, A. J. 1964. Wood and cellulose science. Ronald Press Co., N.Y. 549 pp.nStamm, A. J. 1967. Movement of fluids in wood: Part I. Flow of fluids in wood. Wood Sci. Technol.1:122-141.nStone, J. E. 1966. The cell wall. Trend Mag.: Activities of the Pulp and Paper Institute of Canada, No. 7. Pp. 4-9. Spring.nStone, J. E., and A. M. Scallan. 1967. The effect of component removal upon the porous structure of the cell wall of wood. Tappi50(10):496-501.nTAPPI. Forest Biology Subcommittee No. 2. 1963. Existing methods of value for small sample measurement of wood and fiber properties. Tappi46(6):150A-156A.nTAPPI. Forest Biology Subcommittee No. 2. 1966. Needs for improvement in methods for small sample measurement of wood and fiber properties. Tappi CA Rep. No. 5. Tappi49(2):87A-91A.nTAPPI. Forest Biology Subcommittee No. 2. 1968. New methods of measuring wood and fiber properties in small samples. Tappi CA Rep. No. 12 and Tappi51(1):75A-80A.nVintila, E. 1939. Untersuchungen über Raumgewicht und Schwindmass von Frü- und Späthulz bei Nadelhölzern. Holz Roh Werkst2(10):345-357.nWangaard, F. F. 1969. Cell-wall density of wood with particular reference to the southern pines. Wood Sci.1(4):222-226.nWedel, K. von. 1962. Untersuchungen über Eigenschaften Versertung und Verwerdung des Ahornholzer. Dissertation zur Erlangung das Doktorgrader der Forstlichen Fakultät der Georg-August-Universität zu Göttingen in Hann. Mündern.nWinslow, M. M., and J. J. Shapiro. 1959. An instrument for the measure of pore size distribution by mercury penetration. ASTM Bull. No.236:39-44.n






Research Contributions