A Model for Viscoelastic Consolidation of Wood-Strand Mats. Part II: Static Stress-Strain Behavior of the Mat

Authors

  • Elemer M. Lang
  • Michael P. Wolcott

Keywords:

Wood-strand mats, consolidation, stress, compression strain, nonlinear strain function

Abstract

A solid mechanics model is developed to predict the static stress-strain behavior of randomly formed wood-strand mats during pressing. The procedure includes a Monte Carlo simulation for reconstructing the mat structure. During the early stages of mat displacement, the model computes the cumulative stress development from strand bending. As consolidation continues, the overlapping strands form solid columns. Hooke's Law, modified by a nonlinear strain function, governs the stress development in a finite number of these imaginary columns comprising the mat. Experimental results showed good agreement with the predicted stress response.

References

Dai, C., and P. R. Steiner. 1993. Compression behavior of randomly formed wood strand mats. Wood Fiber Sci. 25(4):349-358.nDai, C., and P. R. Steiner. 1994a. Spatial structure of wood composites in relation to processing and performance characteristics. Part 2. Modelling and simulation of a randomly-formed strand layer network. Wood Sci Technol. 28(2):135-146.nDai, C., and P. R. Steiner. 1994b. Spatial structure of wood composites in relation to processing and performance characteristics. Part 3. Modelling the formation of multi-layered random strand mat. Wood Sci. Technol. 28(3):229-239.nHarless, T. E. G., F. G. Wagner, P. H. Short, R. D. Seale, P. H. Mitchell, and D. S. Ladd. 1987. A model to predict the density profile of particleboard. Wood Fiber Sci. 19(1):81-92.nLang, E. M., and M. P. Wolcott. 1996. A model for viscoelastic consolidation of wood-strand mats. Part I: Structural characterization of the mat via Monte Carlo simulation. Wood Fiber Sci. 28(1):100-109.nMaiti, S. K., L. J. Gibson, and M.F. Ashby. 1984. Deformation and energy absorption diagrams for cellular solids. Acta Metall. 32(11):1963-1975.nRush, K. C. 1969. Load-compression behavior of flexible foams. J. Appl. Polym. Sci. 13:2297-2311.nSteiner, P. R., and C. Dai. 1994. Spatial structure of wood composites in relation to processing and performance characteristics. Part 1. Rationale for model development. Wood Sci. Technol. 28(1):45-51.nSuchsland, O. 1959. An analysis of the particleboard process. Michigan Quart. Bull. 42(2):350-372.nSuchsland, O. 1962. The density distributions in strand boards. Michigan Quart. Bull. 45(1):104-121.nSuchsland, O., and Hong Xu. 1989. A simulation of the horizontal density distribution in a strandboard. Forest Prod. J. 39(5):29-33.nUSDA Forest Service. 1987. Wood handbook. USDA Agrk. Handb. 72 (rev.) USDA Forest Service, Forest Prod. Lab., Madison, WI. 466 pp.nWolcott, M. P. 1990. Modeling viscoelastic cellular materials for the pressing of wood composite. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA. 170 pp.nWolcott, M. P., F. A. Kamke, and D. A. Dillard. 1990. Fundamentals of strandboard manufacture: Viseoelastic behavior of the wood component. Wood Fiber Sci. 22(4):345-361.nWolcott, M. P., B. Kasal, F. A. Kamke, and D. A. Dillard. 1989a. Modeling wood as a polymeric foam: An application to wood-based composite manufacture. Proc. Third joint ASCE-ASME Mechanics Conference. University of California, San Diego, LaJolla, CA. Pp. 53-60.nWolcott, M. P., B. Kasal, F. A. Kamke, and D. A. Dillard. 1989b. Testing small wood specimens in transverse compression. Wood Fiber Sci 21(3):320-329.n

Downloads

Published

2007-06-19

Issue

Section

Research Contributions