Application of the Dichromatic Reflection Model to Wood

Authors

  • Alberto G. Maristany
  • Patricia K. Lebow
  • Charles C. Brunner

Keywords:

Computer vision, color vision, reflection model, spectral reflectance, Douglas-fir veneer, wood surface

Abstract

The applicability of the dichromatic reflection model to describe wood-light interactions in Douglas-fir veneer was investigated. Spectral reflectance measurements taken with illumination along and across the fibers were analyzed by the methodology proposed by Lee et al. (1990). Differences between observed and predicted spectral reflectances were small overall, and increased towards the blue end of the spectrum. Transmission through cell walls, interreflection between cell walls, and an optically active interface are possible explanations for these differences. Average reflectances were higher when samples were illuminated across the directions of the fibers. Rotary-peeled veneer, however, presents surface irregularities where the wood fibers have been pulled away from the surface of the material and where the along-fiber brightness is higher than its corresponding across-fiber measurement.

References

Bajcsy, R., S. W. Lee, and A. Leonardis. 1990. Color image segmentation and color constancy. Pages 245-255 in Perceiving, measuring, and using color. Proc. SPIE 1250. SPIE—The International Society for Optical Engineering, Bellingham, WA.nBaribeau, R., M. Rioux, and G. Godin. 1992. Color reflectance modeling using a polychromatic laser range sensor. IEEE Trans. Patt. Anal. Machine Intell. 14(2): 263-269.nBrunner, C. C., A. G. Maristany, D. A. Butler, D. VanLeuween, And J. W. Funck. 1992. An evaluation of color spaces for detecting defects in Douglas-fir veneer. Ind. Metrol. 2:169-184.nButler, D. A., C. C. Brunner, and J. W. Funck. 1989. A dual-threshold image sweep-and-mark algorithm for defect detection in veneer. Forest Prod. J. 39(5):25-28.nCommission Internationale de L'Eclairage (CIE). 1986. Colorimetry, 2nd ed. Pub. CIE N° 15.2. Central Bureau of the CIE, Vienna, Austria.nConners, R. W., C. W. McMillin, and C. N. Ng. 1985. The utility of color information in the location and identification of defects in surfaced hardwood lumber. Pages XVIII-1-XVIII-33 in Proc. 1st Int. Conf. Scanning Technology in Sawmilling, San Francisco, CA.nConners, R. W., C. W. McMillin, K. Lin, and R. E. Vasquez-Espinosa. 1983. Identifying and locating surface defects in wood: Part of an automated lumber processing system. IEEE Trans. Patt. Anal. Machine Intell. 5(6):573-583.nForrer, J. B., D. A. Butler, C. C. Brunner, and J. W. Funck. 1989. Image sweep-and-mark algorithms. Part 2. Performance evaluations. Forest Prod. J. 39(1):39-42.nForrer, J. B., D. A. Butler, J. W. Funck, and C. C. Brunner. 1988. Image sweep-and-mark algorithms. Part 1. Basic algorithms. Forest Prod. J. 38(11/12):75-79.nGershon, R., A. D. Jepson, and J. K. Tsotsos. 1987. Highlight identification using chromatic information. Pages 161-170 in Proc. IEEE 1st Int. Conf. Computer Vision, London, England.nGray, V. R. 1961. The colour of wood and its changes. Research Rep. C/RR/10. Timber Development Association Ltd., Bucks, England.nHaygreen, J. G., and J. L. Bowyer. 1982. Forest products and wood science. The Iowa State University Press, Ames, IA.nHealey, G. 1989. Using color for geometry-insensitive segmentation. J. Opt. Soc. Amer. A 6(6):920-937.nHealey, G. 1990. Using physical color models in 3-D machine vision. Pages 264-275 in Perceiving, measuring, and using color. Proc. SPIE 1250. SPIE—The International Society for Optical Engineering, Bellingham, WA.nHo, J., B. V. Funt, and M. S. Drew. 1990. Separating a color signal into illumination and surface reflectance components: Theory and applications. IEEE Trans. Patt. Anal. Machine Intell. 12(10):966-977.nHorn, B. K. P. 1986. Robot vision. The MIT Press, Cambridge, MA.nHunter, R. S., and R. W. Harrold. 1987. The measurement of appearance. Wiley, New York, NY.nJudd, D. B., and G. Wyszecki. 1975. Color in business, science, and industry, 3rd ed. Wiley, New York, NY.nKanade, T., and K. Ikeuchi. 1991. Introduction to the special issue on physical modeling in computer vision. IEEE Trans. Patt. Anal. Machine Intell. 13(7):609-610.nKlinker, G. J. 1988. A physical approach to color image understanding. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.nKlinker, G. J., S. A. Shafer, and T. Kanade. 1990. A physical approach to color image understanding. Intl. J. Comput. Vision 4:7-38.nKoivo, A. J., and C. W. Kim. 1989. Automatic classification of surface defects on red oak boards. Forest Prod. J. 39(9):22-30.nLee, H. C. 1986. Method for computing the scene-illuminant chromaticity from specular highlights. J. Opt. Soc. Amer. A 3(10):1694-1699.nLee, H. C. 1991. Personal communication. Eastman Kodak Co., Rochester, NY.nLee, H. C., E. J. Breneman, and C. P. Schulte. 1990. Modeling light reflection for computer color vision. IEEE Trans. Patt. Anal. Machine Intell. 12(4):402-409.nMaristany, A. G., P. K., Lebow, C. C. Brunner, D. A. Butler, and J. W. Funck. 1992. Classifying wood-surface features using dichromatic reflection. Pages 56-64 in Optics in agriculture and forestry. Proc. SPIE 1836. SPIE—The International Society for Optical Engineering, Bellingham, WA.nMatthews, P. C. 1987. Wood, light and objective scanning. Pages XI-1-XI-13 in Proc. 2nd Int. Conf. Scanning Technology in Sawmilling, San Francisco, CA.nNicodemus, F. E., J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. 1977. Geometrical considerations and nomenclature for reflectance. U.S. Department of Commerce, National Bureau of Standards Monograph 160.nNovak, C. L. 1992. Estimating scene properties by analyzing color histograms with physics-based models. Technical Report CMU-CS-92-222. Department of Computer Science, Carnegie Mellon University, Pittsburg, PA.nOverheim, R. D., and D. L. Wagner. 1982. Light and color. Wiley, New York, NY.nShafer, S. A. 1985. Using color to separate reflection components. COLOR Res. Appl. 10(4):210-218.nShafer, S. A., and T. Kanade. 1987. Color vision. Pages 124-131 in Encyclopedia of artificial intelligence. Wiley, New York, NY.nSobey, P. J., and E. C. Semple. 1989. Detection and sizing visual features in wood using tonal measures and a classification algorithm. Pattern Recognition 22(4): 367-380.nTominaga, S. 1991. Surface identification using the dichromatic reflection model. IEEE Trans. Patt. Anal. Machine Intell. 13(7):658-670.nTominaga, S. 1992. Personal communication. Osaka Electro-Communication University, Osaka, Japan.n

Downloads

Published

2007-06-22

Issue

Section

Research Contributions