Low Temperature Internal Friction and Dynamic Modulus for Beach Wood

Authors

  • Erik J. Sellevold
  • Fariborz Radjy
  • Preben Hoffmeyer
  • Lars Bach

Keywords:

Fagus silvatica, dynamic elastic modulus, internal friction, temperature effects, moisture content, moisture effects

Abstract

The dynamic elastic modulus and the internal friction of beech wood beams conditioned to various equilibrium moisture contents have been measured in the temperature range from 25 C to -130 C. The response curves show a marked transition around -90 C for wood with moisture contents at or above the fibre saturation level. The transition is similar to those found for other microporous water-adsorbing materials such as hardened cement paste and porous glass. Decreasing moisture contents in the wood reduce the magnitude of the transition and shift the transition to higher temperatures. We believe the transition to be caused by a gradual solidification ("glass transition") of the adsorbed water.

References

Bernier, G. A., and D. E. Kline. 1963. Dynamic mechanical behavior of birch compared with methyl methacrylate impregnated birch from 90° to 475°K. For. Prod. J. 18(4):79-82.nBlankenhorn, P. R., G. M. Jenkins, and D. E. Kline. 1972. Dynamic mechanical properties and microstructure of some carbonized hardwoods. Wood Fiber 4(3):212-224.nBlankenhorn, P. R., D. E. Kline, and F. C. Beall. 1973. Dynamic mechanical behavior of black cherry (Prunus serotina Ehrh.). Wood Fiber 4(4): 298-308.nDufay, R., I. Prigogine, A. Bellemans, and D. H. Everett. 1966. Surface tension and adsorption. Longmans, Green & Co. Ltd., Great Britain.nHelmuth, R. A. 1972. Investigation of the low temperature dynamic-mechanical response of hardened cement paste. Tech. Report No. 154, Dept. of Civil Engineering, Stanford Univ.nKimura, M., H. Hatakeyama, M. Usuda, and J. Nakano. 1972. Studies on adsorbed water in cellulose by broadline NMR. J. Appl. Poly. Sci. 16:1749-1759.nKollman, F., and H. Krech. 1960. Dynamische Messung der elastischen Holzeigenschaften. Holz Roh- Werkst. 18(2):41-54.nKübler, H. 1962. Schwinden and Quellen des Holzes durch Kälte. Holz Roh- Werkst. 20(9):364-368.nPentoney, R. E. 1955. Effect of moisture content and grain angle on the internal friction of wood. Composite Wood 2(6):131-136.nRadjy, F. 1968. Thermodynamic study of the system hardened cement paste and water and its dynamic mechanical response as a function of temperature. Tech. Report No. 90, Dept. of Civil Engineering, Stanford Univ.nRadjy, F., and C. W. Richards. 1969. Internal friction and dynamic modulus transition in hardened cement paste at low temperatures. Rilem 2(17).nRadjy, F., and E. J. Sellevold. 1973. Internal friction peaks due to adsorbed and capillary water in microporous substances. Nature Phys. Sci. 241(111).nRadjy, F., and E. J. Sellevold. 1976. Low temperature dynamic-mechanical response of porous vycor glass as a function of moisture content. Part II: The adsorbate transition. To be submitted to J. Mat. Sci.nSellevold, E. J., and F. Radjy. 1976. Low temperature dynamic-mechanical response of porous vycor glass as a function of moisture content. Part I: The capillary transition. Accepted for publication by J. Mat. Sci.nSkaar, C. 1972. Water in wood. Syracuse Univ. Press, Syracuse, N.Y.n

Downloads

Published

2007-06-05

Issue

Section

Research Contributions