EVALUATION OF XYLEM MATURTATION PROCESS AND EFFECTS OF RADIAL GROWTH RATE ON CELL MORPHOLOGIES IN WOOD OF BALSA (OCHROMA PRYAMIDALE) TREES

Authors

  • Y.A.B Pertiwi
  • F. Ishiguri Utsunomiya University
  • I. Nezu
  • H. Aiso
  • Y. Hiraoka
  • S. N. Marsoem
  • J. Ohshima
  • S. Yokota

Abstract

The radial variations of cell morphologies (cell lengths, vessel diameter, vessel frequency and cell wall thickness of wood fibers) were investigated for 7-year-old Ochroma pyramidale trees planted in East Java, Indonesia by developing the linear or nonlinear mixed-effects models. In addition, xylem maturation process based on the cell morphologies and effects of radial growth rate on cell morphologies were discussed. The mean values of cell morphology were as follow: vessel element length 0.59 mm, fiber length 2.16 mm, vessel diameter 221 µm, and fiber wall thickness 1.03 µm. Radial variations of cell length and vessel diameter were well explained by Michaelis-Menten equation: values increased from pith to certain position and then it became almost stable. Vessel frequency, wood fiber diameter, and wood fiber wall thickness was expressed by the formula of logarithmic formula, quadratic formula, and linear formula, respectively. Variance component ration of category was 66.8%, 46.1%, 31.4%, 1.5%, and 33.7% for vessel element length, wood fiber length, vessel diameter, vessel frequency, and wood fiber wall thickness, respectively, suggesting that many cell morphologies influenced by the radial growth rate. Smaller values of mean absolute error obtained in the models in relation to distance from pith were found in all cell morphologies, except for vessel frequency and wood fiber diameter. Thus, xylem maturation of this species depended on diameter growth rather than cambial age. Boundary of core wood and outer wood was 5 to 10 cm from pith in which increasing ratio of cell length reached less than 0.3%. Core wood was characterized as lower wood density and mechanical properties with shorter cell lengths and thinner wood fiber walls, whereas outer wood was characterized as higher wood density and mechanical properties with longer cell length and thicker wood fiber walls.

Downloads

Published

2022-06-07

Issue

Section

Research Contributions