EVALUATION OF XYLEM MATURTATION PROCESS AND EFFECTS OF RADIAL GROWTH RATE ON CELL MORPHOLOGIES IN WOOD OF BALSA (OCHROMA PRYAMIDALE) TREES
Abstract
The radial variations of cell morphologies (cell lengths, vessel diameter, vessel frequency and cell wall thickness of wood fibers) were investigated for 7-year-old Ochroma pyramidale trees planted in East Java, Indonesia by developing the linear or nonlinear mixed-effects models. In addition, xylem maturation process based on the cell morphologies and effects of radial growth rate on cell morphologies were discussed. The mean values of cell morphology were as follow: vessel element length 0.59 mm, fiber length 2.16 mm, vessel diameter 221 µm, and fiber wall thickness 1.03 µm. Radial variations of cell length and vessel diameter were well explained by Michaelis-Menten equation: values increased from pith to certain position and then it became almost stable. Vessel frequency, wood fiber diameter, and wood fiber wall thickness was expressed by the formula of logarithmic formula, quadratic formula, and linear formula, respectively. Variance component ration of category was 66.8%, 46.1%, 31.4%, 1.5%, and 33.7% for vessel element length, wood fiber length, vessel diameter, vessel frequency, and wood fiber wall thickness, respectively, suggesting that many cell morphologies influenced by the radial growth rate. Smaller values of mean absolute error obtained in the models in relation to distance from pith were found in all cell morphologies, except for vessel frequency and wood fiber diameter. Thus, xylem maturation of this species depended on diameter growth rather than cambial age. Boundary of core wood and outer wood was 5 to 10 cm from pith in which increasing ratio of cell length reached less than 0.3%. Core wood was characterized as lower wood density and mechanical properties with shorter cell lengths and thinner wood fiber walls, whereas outer wood was characterized as higher wood density and mechanical properties with longer cell length and thicker wood fiber walls.
Downloads
Published
Issue
Section
License
The copyright of an article published in Wood and Fiber Science is transferred to the Society of Wood Science and Technology (for U. S. Government employees: to the extent transferable), effective if and when the article is accepted for publication. This transfer grants the Society of Wood Science and Technology permission to republish all or any part of the article in any form, e.g., reprints for sale, microfiche, proceedings, etc. However, the authors reserve the following as set forth in the Copyright Law:
1. All proprietary rights other than copyright, such as patent rights.
2. The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In the case of whole articles, such third parties must obtain Society of Wood Science and Technology written permission as well. However, the Society may grant rights with respect to Journal issues as a whole.
3. The right to use all or part of this article in future works of their own, such as lectures, press releases, reviews, text books, or reprint books.