Representative Heights for Assessing Whole-Tree Values and the Within-Tree Variations of Derived Wood Properties in Eucalyptus Camaldulensis and E. Globulus

Authors

  • Jyunichi Ohshima
  • Shinso Yokota
  • Nobuo Yoshizawa
  • Toshihiro Ona

Keywords:

Eucalyptus, derived wood properties, within-tree variation, representative height, quality breeding

Abstract

The representative heights in the trunk to indicate whole-tree values and the within-tree variations of derived wood properties, namely flexibility coefficient, wall coverage ratio, vessel diameter radial/tangential (R/T) ratio, fiber diameter R/T ratio, and fiber coarseness, were examined in Eucalyptus camaldulensis and E. globulus trees. In both species, within-tree variations were generally observed as high in the upper and outer parts of the trunk for wall coverage ratio and in the lower parts for flexibility coefficient and vessel diameter R/T ratio. In E. camaldulensis, within-tree variations were observed as high in the upper and outer parts of the trunk for fiber coarseness, and in the lower and inner parts for fiber diameter R/T ratio. In E. globulus, within-tree variations were observed as high in the outer parts for fiber coarseness, but fiber diameter R/T ratio had no clear trend. The representative height assessing the derived wood properties was 2.8 m in E. camaldulensis and 1.8 m in E. globulus, regardless of differences in tree height (growth rate). No representative height was found for wall coverage ratio.

References

Barrichelo, L. E., J. O. Brito, and A. J. Migliorini. 1983. Estudo da variação longitudinal da densidade básicá de Eucalyptus spp.Silvicultura 28:726-731.nClark, Jd'Arcy. 1962. Effect of fibre coarseness and length. 1. Bulk, burst, tear, fold and tensile tests. Tappi J. 45:628-634.nCornéer, B. E. 1986. Eucalyptus-an ideal pulp for printing paper. Pap. Technol. Ind. 26:21-22.nDuplooy, A. B. J. 1980. The relationship between wood and pulp properties of E. grandis (Hill ex-Maide) grown in South Africa. Appita 33:257-264.nHannrup, B., C. Cahalan, G. Chantre, M. Grabner, B. Karlson, I. L. Bayon, G. L. Jones, U. Müller, H. Pereira, J. C. Rodrigues, S. Rosner, P. Rozenberg, L. Wilhelmsson, and R. Wimmer. 2004. Genetic parameters of growth and wood quality traits in Picea abies.Scand. J. For. Res. 19:14-29.nHudson, I., L. Wilson, and K. Van Beveren. 1998. Vessel and fibre property in Eucalyptus globulus and Eucalyptus nitens: Some preliminary results. IAWA J. 19:111-130.nHudson, I., L. Wilson, and K. Van Beveren. 2000. Association of fibre morphology with cambial age and attained height: New oblique axes whole tree variation in Eucalyptus globulus.Appita J. 53:122-140.nHudson, I., L. Wilson, and K. Van Beveren. 2001. Between species differences in whole tree maps of fibre properties in E. nitens and E. globulus—Utility of control deviation charts to assess optimal sampling height. Appita J. 54:182-189.nKibblewhite, R. P. 1999. Designer fibres for improved papers through exploiting genetic variation in wood microstructure. Appita J. 52:429-435, 440.nKibblewhite, R. P., and C. J. McKenzie. 1999. Kraft fibre property variation among 29 trees of 15 year old Eucalyptus fastigata and comparison with E. nitens.Appita J. 52:218-225.nKibblewhite, R. P., A. D. Bawden, and M. C. Hughes. 1991. Hardwood market kraft fiber and pulp qualities. Appita J. 44:325-332.nMalan, F. S. 1988. Genetic variation in some growth and wood properties among 18 full-sib families of South African grown Eucalyptus grandis: A preliminary investigation.S. Afr. For. J. 146:38-43.nMalan, F. S. and G. F. R. Gerischer. 1987. Wood property differences in South African grown Eucalyptus grandis trees of different growth stress intensity. Holzforschung 41: 331-335.nMalan, F. S., J. R. Male, and J. S. M. Venter. 1994. Relationship between the properties of Eucalyptus wood and some chemical, pulp, and paper properties. Paper Southern Africa: 6-16.nMiranda, I., and H. Pereira. 2001. Provenance effect on wood chemical composition and pulp yield for Eucalyptus globulus Labill. Appita J. 54:347-351.nMiranda, I., and H. Pereira. 2002. Variation of pulpwood quality with provenances and site in Eucalyptus globulus.Ann. For. Sci. 59:283-291.nMottet, A. 1965. Considerations on the relationship between certain anatomical characteristics and density in tropical woods. Page 15 in Proc. Meeting Section 41 IUFRO, Melbourne.nMuneri, A., and C. A. Raymond. 2001. Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. II. Fibre length and coarseness. Wood Sci. Technol. 35:41-56.nNyakuengama, J. G., R. Evans, C. Matheson, D. Spencer, and P. Vinden. 1997. Time trends in the genetic control of wood microstructure traits in Pinus radiata.Appita J. 50:486-494.nOhshima, J., S. Yokota, N. Yoshizawa, and T. Ona. 2003. Within-tree variation of detailed fibre morphology and its position representing the whole-tree value in Eucalyptus camaldulensis and E. globulus.Appita J. 56: 476-482.nOhshima, J., S. Yokota, N. Yoshizawa, and T. Ona. 2004. Within-tree variation of vessel morphology and frequency and representative heights for estimating whole-tree values in Eucalyptus camaldulensis and E. globulus.Appita J. 57: 64-69.nOna, T., and T. Sonoda. 1996. Quality breeding of pulpwood. Cell. Commun. 2 (3):3-7.nOna, T., T. Sonoda., K. Ito, and M. Shibata. 1995. Studies on decision of selection indexes for quality breeding of eucalypt wood (I). Within-tree variations and the positions representing the whole-tree values of polysaccharides contents on E. camaldulensis and E. globulus.Jpn. Tappi 49:724-734nOna, T., T. Sonoda., K. Ito, M. Shibata., Y. Tamai, and Y. Kojima. 1996. Use of the radially divided increment core method to assess pulpwood quality for eucalypt breeding in E. camaldulensis and E. globulus.Appita J. 49:325-331.nOna, T., T. Sonoda., K. Ito, M. Shibata., Y. Tamai, and Y. Kojima., J. Ohshima, S. Yokota, and N. Yoshizawa. 2001. Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree variations. Wood Sci. Technol. 35:229-243.nPot, D., G. Chantre, P. Rozenberg, J. C. Rodrigues, G. L. Jones, H. Pereira, B. Hannrup, C. Cahalan, and C. Plomion. 2002. Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.). Ann. For. Sci. 59:563-575.nShelbourne, T., R. Evans, R. P. Kibblewhite, and C. Low. 1997. Inheritance of tracheid transverse dimensions and wood density in radiata pine. Appita J. 50:47-50.nVarghese, M., K. N. Vishnu Subramanian, S. S. R. Bennet, and S. Jagadees. 1995. Genetic effects on wood and fibre traits of Eucalyptus grandis Provenances. Proc. CRCTHF-IUFRO Conference, Eucalypt Plantations: improving fibre yield and quality, Hobart. Pp. 64-67.nRaymond, C. A., P. Bamham, and A. C. MacDonald. 1998. Within tree variation and genetic control of basic density, fibre length and coarseness in Eucalyptus regnans in Tasmania. Appita J. 51:299-305.nWangaard, F. F. 1962. Contributions of hardwood fibers to the properties of kraft pulps. Tappi 45:548-556.nWilson, L., I. Hudson, and K. Van Beveren. 1997. Vessel distribution at two percentage heights from pith to bark in a 7-year-old E. globulus tree. Appita J. 50:495-500.n

Downloads

Published

2007-06-05

Issue

Section

Research Contributions