Fracture of Solid Wood: A Review of Structure and Properties at Different Length Scales
Keywords:
Fracture mechanics, fracture morphology, solid wood, molecular structure, cellular structureAbstract
This paper presents a review of the fracture literature of solid wood. The review is not exhaustive and is focused on the structure and properties of wood at different length scales. Fracture of wood has been examined in all pure modes as well as mixed-Mode I and II and all directions—radial, tangential, and longitudinal. The literature has been studied at a variety of levels from molecular through cellular and growth ring to macroscopic. The major conclusions are that fracture toughness perpendicular to the grain is greater than that parallel to the grain and Mode II is greater than Mode I, within a given species. Also, fracture toughness increases with increasing density and strain rate. Defects typically reduce the strength and fracture toughness, with edge defects having a greater effect. Finally, the fracture toughness of solid wood reaches a maximum between 6 to 8% moisture content. The paper discusses how these macroscopic observations are related to the chemical composition and micro/meso-structure of wood.References
American Society for Testing and Materials (ASTM). 1994. Standard test method for plane-strain fracture toughness of metallic materials. Annual Book of ASTM Standards.E399-90, 03.01, 407-437.nAshby, M. F., K. E. Easterling, R. Harryson, and S. K. Maiti. 1985. The fracture and toughness of woods. Proc. Royal Soc. London AA398:261-280.nAtack, D., W. D. May, E. L. Morris, and R. N. Sproule. 1961. The energy of tensile and cleavage fracture of black spruce. TAPPI44(8):555-567.nBarrett, J. D. 1981. Fracture mechanics and the design of wood structures. Philo. Trans. Royal Soc. London299:217-226.nBarrett, J. D., and R. O. Foschi. 1977a. Mode II stress-intensity factors for cracked wood beams. Eng. Fract. Mech.9: 371-378.nBarrett, J. D., and R. O. Foschi. 1977b. Shear strength of uniformly loaded dimension lumber. Can. J. Civil Eng.4:86-95.nBlicblau, A. S., and D. J. Cook. 1986. Aspects of wood fracture toughness at various testing speeds. Civil Eng. Trans. 153-158.nBoatright, S. W. J., and G. Garrett. 1979. The effect of knots on the fracture strength of wood—I. A review of methods of assessment; II. A comparative study of methods of assessment, and comments on the application of fracture mechanics to structural timber. Holzforschung3:68-77.nBoatright, S. W. J., and G. Garrett. 1983. The effect of microstructure and stress state on the fracture behaviour of wood. J. Mat. Sci.18:2181-2199.nBostrom, L. 1990. The compact tension test used on wood—An analysis of a testing method. IUFRO S5.02—timber Engineering.nBostrom, L. 1992. Method for determination of the softening behaviour of wood and applicability of a non-linear fracture mechanics model. Lund University TVBM-1012, Lund, Sweden.nCramer, S. M., and J. R. Goodman. 1983. Model for stress analysis and strength prediction of lumber. Wood Fiber Sci.15(4):338-349.nCramer, S. M., and A. D. Pugel. 1987. Compact shear specimen for wood mode II fracture investigations. Int. J. Fracture35:163-174.nDeBaise, G. R. 1972. Morphology of wood shear fracture. J. Materials7(4):568-572.nErhart, R. J. A., S. E. Stanzl-Tschegg, and E. K. Tschegg. 1999. Mode III fracture energy of wood composites in comparison to solid wood. Wood Sci. Technol.33:391-405.nEwing, P. D., and J. D. Williams. 1979a. Thickness and moisture content effect in the fracture toughness of Scots pine. J. Mater. Sci.14(May):2959-2966.nEwing, P. D., and J. D. Williams. 1979b. Slow crack growth in softwoods. ICM3(August):293-298.nFonselius, M., and K. Riipola. 1988. Mode II fracture toughness of wood effects of moisture and time. 1988 Int. Conf. Timber Eng.2:601-609.nForest Products Society. 1999. Mechanical properties Of wood. Pages 4-25 in Wood Handbook: Wood as an Engineered Material, Forest Products Society, Madison, WI.nGibson, L. J., and M. F. Ashby. 1988. Wood. Pages 278-315 in Cellular solids: Structure and properties. Pergamon Press, New York, NY.nGustafsson, P. J. 1988. A study of strength of notched beams. Proc., CIB-W18, Meeting 21. Vancouver, BC.nHunt, D. G., and W. P. Croager. 1982. Mode II fracture toughness of wood measured by a mixed-mode test method. J. Mat. Sci. Letters1:77-79.nJohnson, J. A. 1973. Crack initiation in wood plates. Wood Science6(2):151-158.nKretschmann, D. E., and D. W. Green. 1996. Modeling moisture content-mechanical property relationships for clear southern pine. Wood Fiber Sci.28(3):320-337.nKretschmann, D. E., D. W. Green. and W. J. Nelson. 1990. The effect of moisture content on mode I fracture toughness in southern pine. IUFRO S5.02 Timber Eng. 274-303.nLei, Y. K., and J. B. Wilson. 1980. Fracture toughness of oriented flakeboard. Wood Science12(3):154-161.nLeicester, R. H. 1973. Effect of size on the strength of structures. CSIRO Aust. Forest Prod. Lab., Div. Build. Res. Technol. Pap. No. 71:1-13.nLeicester, R. H. 1974a. Fracture strength of wood. Pages 729-742 in Proc. First Australian Conference on Engineering Materials, University of New South Wales, Sydney, Australia.nLeicester, R. H. 1974b. Applications of linear fracture mechanics in the design of timber structures. Proc. Australian Fracture Group Conference23:156-164.nLeicester, R. H. 1983. The fracture strength of wood. Workshop on timber engineering. Melbourne, Australia (11):1-24.nLeicester, R. H., and W. G. Poynter. 1979. On the design strength of notched beams. 19th Forest Products Research Conference (Melbourne, Australia). 228-232.nLin, S. Y., and S. E. Lebo. 1995. Lignin. Kirk-Othmer Encyclopedia of Chemical Technology. 4th ed. Vol. 15. John Wiley & Sons, New York, NY. Pp. 268-289.nLum, C., and R. O. Foschi. 1988. Arbitrary V-notches in orthotropic plates. J. Eng. Mech.114(4):638-655.nMai, Y. W. 1975. On the velocity-dependent fracture toughness of wood. Wood Science8(1):364-367.nMall, S., J. F. Murphy, and J. E. Shottafer. 1983. Criterion for mixed mode fracture in wood. J. Eng. Mech.109(3):680-690.nMindess, S. 1977. The fracture of wood in tension parallel to the grain. Can. J. Civil Eng.4:412-416.nMindess, S., J. S. Nadeau, and J. D. Barrett. 1975a. Effect of constant deformation rate on the strength perpendicular to the grain of Douglas-fir. Wood Science8(4):262-266.nMindess, S., J. S. Nadeau, and J. D. Barrett. 1975b. Slow crack growth in Douglas-fir. Wood Science8(1):389-396.nMurphy, J. F. 1979a. Strength of wood beams with end splits. Research Paper FPL 3471-12. USDA Forest Serv., Forestry Prod. Lab.nMurphy, J. F. 1979b. Using fracture mechanics to predict failure in notched wood beams. Pages 159-174 in Proc. First Int. Conf. on Wood Fracture. Forintek Canada Corp., Vancouver, BC, Canada.nMurphy, J. F. 1980. Strength of wood beams with side cracks. IUFRO S5.02 Timber Engineering. 255-264.nMurphy, J. F. 1989. Mode II wood test specimen: Beam with center slit. J. Testing Eval.16(4):364-368.nNadeau, J. S., R. Bennett, and E. R. Fuller, Jr. 1982. An explanation for the rate-of-loading and the duration-of-load effects in wood in terms of fracture mechanics. J. Mater. Sci.17:2831-2840.nNikitin, N. I. 1966. The chemistry of cellulose and wood. Israel Program for Scientific Translations, Jerusalem. 691 pp.nPatton-Mallory, M., and S. M. Cramer. 1987. Fracture mechanics: A tool for predicting wood component strength. Forest Prod. J.37(7/8):39-47.nPearson, R. G. 1974. Application of fracture mechanics to the study of the tensile strength of structural lumber. Holzforschung28:11-19.nPetterson, R. W., and J. Bodig. 1983. Prediction of fracture toughness of conifers. Wood Fiber Sci.15(4):302-316.nRichmond, P. A. 1991. Occurrence and functions of native cellulose. Pages 5-23 in C. H. Haigler, and P. J. Weimer, eds. Biosynthesis and biodegradation of cellulose. Marcel Dekker, Inc., New York, NY.nRiipola, K., and M. Fonselius. 1992. Determination of critical J-Integral for wood. J. Struct. Eng.118(7):1741-1750.nSchachner, H., A. Reiterer, and S. E. Stanzl-Tschegg. 2000. Orthotropic fracture toughness of wood. J. Mater. Sci. Letter19(20):1783-1785.nSchniewind, A. P., and R. A. Pozniak. 1971. On the fracture toughness of Douglas-fir wood. Eng. Fract. Mech.2:223-233.nSchniewind, A. P., and J. C. Centeno. 1973. Fracture toughness and duration of load factor I. Six principal systems of crack propagation and the duration factor for cracks propagating parallel to grain. Wood Fiber5(2):152-159.nSchniewind, A. P., and D. E. Lyon. 1973. A fracture mechanics approach to the tensile strength perpendicular to grain of dimension lumber. Wood Sci. Technol.7:45-59.nSobue, N., D. Bajolet, and G. Pluvinage. 1985. Effect of drying stress on the fracture toughness of wood. Mokuzai Gakkaishi31(7):528-531.nSpencer, R. 1979. Rate of loading effect in bending for Douglas-fir lumber. Pages 259-279 in Proc. First Int. Conf. on Wood Fracture, Forintek, Canada, Corp., Vancouver, BC, Canada.nStieda, C. K. A. 1966. Stress concentrations around holes and notches and their effect on the strength of wood beams. J. Materials1(3):560-582.nTan, D.M., S.E. Stazl-Tschegg, and E.K. Tschegg. 1995. Models of wood fracture in Mode I and Mode II. Holz. Roh- Weskst.53:159-164.nThuvander, F., and L. A. Berglund. 2000. In situ observations of fracture mechanisms for radial cracks in wood. J. Mater. Sci.35(24):6277-6283.nThuvander, F., L. O. Jernkvist, and J. Gunnars. 2000a. Influence of repetitive stiffness variation on crack growth behaviour in wood. J. Mater. Sci.35(24):6259-6266.nThuvander, F., M. Sjodahl, and L. A. Berglund. 2000b. Measurements of crack tip strain field in wood at the scale of growth rings. J. Mater. Sci.35(24):6267-6275.nTriboulot, P., P. Jodin, and G. Pluvinage. 1984. Validity of fracture mechanics concepts applied to wood by finite element calculation. Wood Sci. Technol.18:51-58.nValentin, G., and P. Caumes. 1989. Crack propagation in mixed mode in wood: A new specimen. Wood Sci. Technol.23:43-53.nValentin, G., and P. Morlier. 1982. A criterion of crack propagation in timber. Materiaux et Constructions15(88):291-298.nVasic, S., and I. Smith. 2002. Bridging model for fracture of spruce. Eng. Fract. Mech.69:745-760.nWhite, M. S., and D. W. Green. 1980. Effect of substrate on the fracture toughness of wood-adhesive bonds. Wood Science12(3):149-153.nWright, K., and M. Fonselius. 1986. Fracture mechanics testing of wood methods for mode I and mode II. CIBWI8/19. 764-765.nWu, E. M. 1967. Application of fracture mechanics to anisotropic plates. J. Appl. Mech.12:967-974.n
Downloads
Published
Issue
Section
License
The copyright of an article published in Wood and Fiber Science is transferred to the Society of Wood Science and Technology (for U. S. Government employees: to the extent transferable), effective if and when the article is accepted for publication. This transfer grants the Society of Wood Science and Technology permission to republish all or any part of the article in any form, e.g., reprints for sale, microfiche, proceedings, etc. However, the authors reserve the following as set forth in the Copyright Law:
1. All proprietary rights other than copyright, such as patent rights.
2. The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In the case of whole articles, such third parties must obtain Society of Wood Science and Technology written permission as well. However, the Society may grant rights with respect to Journal issues as a whole.
3. The right to use all or part of this article in future works of their own, such as lectures, press releases, reviews, text books, or reprint books.