PREPARATION AND CHARACTERIZATION OF CELLULOSE FILMS FROM FICUS NATALENSIS BARK CLOTH FIBERS

Authors

  • Hua Wang
  • Mugaanire Tendo Innocent
  • Hafeezullah Memon College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018
  • Xiaoke Jin
  • Feichao Zhu

Keywords:

Biodegradable, Cellulose film, Ficus Natalensis, Barkcloth

Abstract

In this study, cellulose films were prepared from Ficus natalensis bark cloth fibers via phase inversion technique using NaOH/urea/water as the solvent. Films were formed at a concentration of 7 wt. % and 8 wt. % of microcrystalline cellulose (MCC) as isolated from Ficus natalensis bark cloth fibers. Their morphology, physiochemical, and mechanical properties were examined with scanning electron microscopy (SEM), Fourier transform IR spectroscopy (FTIR), x-ray diffraction (XRD), thermal gravimetric analysis (TGA) and microcontrolled electronic universal testing machine. The resultant regenerated cellulose (RC) films exhibited rough surfaces morphologically, good tensile strength (19.85 ± 0.13 MPa), exhibited a plastic behavior with considerable strains. However, they are thermally stable at higher temperatures up to 280 °C. Cellulose films from this study could potentially act as biodegradable packaging materials to upgrade the scope of application of Ficus natalensis bark

References

Dou, J.; Galvis, L.; Holopainen-Mantila, U.; Reza, M.; Tamminen, T.; Vuorinen, T. Morphology and overall chemical characterization of willow (Salix sp.) inner bark and wood: toward controlled deconstruction of willow biomass. ACS Sustainable Chemistry & Engineering 2016, 4, 3871-3876.

Dou, J.; Xu, W.; Koivisto, J.J.; Mobley, J.K.; Padmakshan, D.; Kögler, M.; Xu, C.; Willför, S.; Ralph, J.; Vuorinen, T. Characteristics of hot water extracts from the bark of cultivated willow (Salix sp.). ACS Sustainable Chemistry & Engineering 2018, 6, 5566-5573.

Geng, H.; Yuan, Z.; Fan, Q.; Dai, X.; Zhao, Y.; Wang, Z.; Qin, M. Characterisation of cellulose films regenerated from acetone/water coagulants. Carbohydrate polymers 2014, 102, 438-444.

Jansone, Z.; Muizniece, I.; Blumberga, D. Analysis of wood bark use opportunities. Energy Procedia 2017, 128, 268-274.

Kumar, R.; Hynes, N.R.J.; Senthamaraikannan, P.; Saravanakumar, S.; Sanjay, M. Physicochemical and thermal properties of Ceiba pentandra bark fiber. Journal of natural fibers 2018, 15, 822-829.

Le Normand, M.; Moriana, R.; Ek, M. Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydrate polymers 2014, 111, 979-987.

Lindman, B.; Karlström, G.; Stigsson, L. On the mechanism of dissolution of cellulose. Journal of Molecular Liquids 2010, 156, 76-81.

Liu, Z.; Sun, X.; Hao, M.; Huang, C.; Xue, Z.; Mu, T. Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydrate polymers 2015, 117, 99-105.

Mugaanire, I.T.; Wang, H.; Sun, J. Fibrous microcrystalline cellulose from Ficus natalensis barkcloth. European Journal of Wood and Wood Products 2019, 77, 483-486.

Pang, J.; Wu, M.; Zhang, Q.; Tan, X.; Xu, F.; Zhang, X.; Sun, R. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydrate polymers 2015, 121, 71-78.

Parida, C.; Dash, S.K.; Pradhan, C. FTIR and Raman Studies of Cellulose Fibers of Luffa cylindrica. Open Journal of Composite Materials 2015, 5, 5-10.

Pásztory, Z.; Mohácsiné, I.R.; Gorbacheva, G.; Börcsök, Z. The utilization of tree bark. BioResources 2016, 11, 7859-7888.

Reddy, K.O.; Maheswari, C.U.; Dhlamini, M.; Mothudi, B.; Zhang, J.; Zhang, J.; Nagarajan, R.; Rajulu, A.V. Preparation and characterization of regenerated cellulose films using borassus fruit fibers and an ionic liquid. Carbohydrate polymers 2017, 160, 203-211.

Robertson, L. Rethinking material culture: Ugandan bark cloth. In Proceedings of Biennial Symposium Proceedings: New Directions: Examining the Past, Creating the Future, Los Angeles, California, September 10–14, 2014.

Rwawiire, S.; Tomkova, B. Thermal, static, and dynamic mechanical properties of bark cloth (ficus brachypoda) laminar epoxy composites. Polymer Composites 2017, 38, 199-204.

Rwawiire, S.; Tomkova, B.; Militky, J.; Hes, L.; Kale, B.M. Acoustic and thermal properties of a cellulose nonwoven natural fabric (barkcloth). Applied Acoustics 2017, 116, 177-183.

Saravana Kumaar, A.; Senthilkumar, A.; Sornakumar, T.; Saravanakumar, S.; Arthanariesewaran, V. Physicochemical properties of new cellulosic fiber extracted from Carica papaya bark. Journal of Natural Fibers 2019, 16, 175-184.

Segal, L.; Creely, J.; Martin Jr, A.; Conrad, C. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 1959, 29, 786-794.

Thygesen, A.; Oddershede, J.; Lilholt, H.; Thomsen, A.B.; Ståhl, K. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 2005, 12, 563.

Trache, D.; Hussin, M.H.; Chuin, C.T.H.; Sabar, S.; Fazita, M.N.; Taiwo, O.F.; Hassan, T.; Haafiz, M.M. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules 2016, 93, 789-804.

Wang, H.; Memon, H.; AM Hassan, E.; Miah, M.; Ali, M. Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite. Materials 2019, 12, 1226.

Wu, L.; Sun, J.; Wu, M. Modified cellulose membrane prepared from corn stalk for adsorption of methyl blue. Cellulose 2017, 24, 5625-5638.

Published

2021-02-05

Issue

Section

Research Contributions