Life-time improvement and the cutting forces in nitrogen-implanted drills during wood-based material machining

Authors

  • Jacek Wilkowski Warsaw University of Life Sciences – SGGW, Department of Mechanical Processing of Wood, Nowoursynowska Str. 159, 02-787 Warsaw
  • Marek Barlak National Centre for Nuclear Research Świerk - NCBJ, Plasma and Ion Technology Division (FM2), 7 Andrzeja Sołtana Str., 05-400 Otwock
  • Zbigniew Werner National Centre for Nuclear Research Świerk - NCBJ, Plasma and Ion Technology Division (FM2), 7 Andrzeja Sołtana Str., 05-400 Otwock
  • Jerzy Zagórski National Centre for Nuclear Research Świerk - NCBJ, Plasma and Ion Technology Division (FM2), 7 Andrzeja Sołtana Str., 05-400 Otwock
  • Paweł Czarniak Warsaw University of Life Sciences – SGGW, Department of Mechanical Processing of Wood, Nowoursynowska Str. 159, 02-787 Warsaw
  • Piotr Podziewski Warsaw University of Life Sciences – SGGW, Department of Mechanical Processing of Wood, Nowoursynowska Str. 159, 02-787 Warsaw
  • Karol Szymanowski Warsaw University of Life Sciences – SGGW, Department of Mechanical Processing of Wood, Nowoursynowska Str. 159, 02-787 Warsaw

Keywords:

Nitrogen ion implantation, Drill durability, Wood-based materials, CNC woodworking machine, Cutting forces

Abstract

This study explored the effects of nitrogen (N) ion implantation of drills for wood-based materials. Modification of a tool’s surface is a common process of prolonging its lifetime. For the purpose of this study, ion implantation was used for modification of drills commonly used in the furniture industry. The rake face of high-speed steel drills was implanted with different doses of nitrogen ions. Durability tests were conducted with the use of a computerized numerical control woodworking machine used for drilling laminated particleboards. The cutting force and drilling torque were measured. The obtained results were presented as wear curves of the examined drill bits. Based on the results, tools implanted with nitrogen ions at different doses had a longer tool life.

References

Aknouche H, Outahyon A, Nouveau C, Marchal R, Zerizer A, Butaud J (2009) Tool wear effect on cutting forces: In routing process of Aleppo pine wood. J Mater Process Technol 209(6):2918-2922.

Bai Q, Yao Y, Zhang G (2004) Study on wear mechanisms and grain effects of PCD tool in machining laminated flooring. Int J Refract Met Hard Mater 22(2-3):111-115

Barlak M, Piekoszewski J, Stanislawski J, Werner Z, Borkowska K, Chmielewski M, Sartowska B, Miskiewicz M, Starosta W, Walis L, Jagielskiad J (2007a) The effect of intense plasma pulse pre-treatment on wettability in ceramic-copper system. Fusion Eng Des 82(15-24):2524-2530.

Barlak M, Olesi´nska W, Piekoszewski J, Werner Z, Chmielewski M, Jagielski J, Kali´nski D, Sartowska B, Borkowska K (2007b) Ion beam modification of ceramic component prior to formation of AlN-Cu joints by direct bonding process. Surf Coat Technol 201(19-20):8317-8321.

Barlak M, Chmielewski M, Werner Z, Pietrzak K (2014) Changes of tribological properties of Inconel 600 after ion implantation process. Bull Pol Acad Sci Tech Sci 62(4):827-833.

Barlak M, Wilkowski J, Boruszewski P, Werner Z, Pałubicki B (2017) Changes of functional properties of materials used in wood industry after ion implantation process. Ann Warsaw Univ Life Sci SGGW For Wood Technol 97:133-139.

Barlak M, Wilkowski J, Werner Z (2016) Ion implantation changes of tribological and corrosion resistance properties of materials used in wood industry. Ann Warsaw Univ Life Sci SGGW For Wood Technol 94:19-27.

Beer P, Djouadi M, Marchal R, Sokolowska A, Lambertin M, Czyzniewski A, PrechtW(1999a) Antiabrasive coatings in a new application–Wood rotary peeling process. Vacuum 53(1-2):363-366.

Beer P, Djouadi M, Marchal R, Sokolowska A, Lambertin M, Miklaszewski S (1999b) Influence of knife-surfaces modification with hard coatings on the peeling wood process. J Mater Process Technol 92-93:264-268.

Beer P, Rudnicki J, Bugliosi S, Sokołowska A, Wnukowski E (2005) Low temperature ion nitriding of the cutting knives made of HSS. Surf Coat Technol 200(1-4):146-148.

Beer P, Rudnicki J, Ciupinski L, Djouadi M, Nouveau C (2003) Modification by composite coatings of knives made of low alloy steel for wood machining purposes. Surf Coat Technol 174-175:434-439.

Benlatreche Y, Nouveau C, Marchal R, Ferreira Martins JP, Aknouche H (2009) Applications of CrAlN ternary system in wood machining of medium density fibreboard (MDF). Wear 267(5-8):1056-1061.

Bobadilla M, Tschiptschin A (2015) On the nitrogen diffusion in a duplex stainless steel. Mater Res 18(2):390-394.

Budzynski P (2015) Long-range effect in nitrogen ion implanted AISI 316L stainless steel. Nucl Instrum Methods Phys Res Sect B 342:1-6.

Bugaev SP, Nikolaev AG, Oks EM, Schanin PM, Yushkov GY (1994) The “TITAN” ion source. Rev Sci Instrum 65:3119-3125.

Bull S, Jones A, McCabe A (1996) Improving the mechanical properties of steels using low energy, high temperature nitrogen ion implantation. Surf Coat Technol 83(1-3):257-262.

Byeli AV, Lobodaeva OV, Shykh SK, Kukareko VA (1995) Microstructural variations and tribology of molybdenum type high speed steel ion implanted with high current density nitrogen beams. Wear 181-183(Part 2):632-637.

Chou Y, Liu J (2004) Ion implantation of superhard ceramic cutting tools. J Mater Eng Perform 13(4):398-405.

Dearnaley G, Arps J (2006) Ion surface treatment of materials. Pages 101-120 in Y Pauleau, ed. Materials surface processing by directed energy techniques, 1st edition. Elsevier Science Publishers Ltd., London, UK.

Djouadi M, Beer P, Marchal R, Sokolowska A, Lambertin M, Precht W, Nouveau C (1999) Antiabrasive coatings: Application for wood processing. Surf Coat Technol 116-119:508-516.

Eblagon F, Ehrle B, Graule T, Kuebler J (2007) Development of silicon nitride/silicon carbide composites for woodcutting tools. J Eur Ceram Soc 27(1):419-428.

Faga M, Settineri L (2006) Innovative anti-wear coatings on cutting tools for wood machining. Surf Coat Technol 201(6):3002-3007.

Garcıa J, Rodrıguez R (2011) Ion implantation techniques for non-electronic applications. Vacuum 85(12):1125-1129.

Gogolewski P, Klimke J, Krell A, Beer P (2009) Al2O3 tools towards effective machining of wood-based materials. J Mater Process Technol 209(5):2231-2236.

Jagielski J (2005) Friction properties of ion-beam modified materials: Where can we search for practical applications of ion implantation? Vacuum 78(2-4):409-415.

Jagielski J, Piatkowska A, Aubert P, Thome L, Turos A, Abdul Kader A (2006) Ion implantation for surface modification of biomaterials. Surf Coat Tech 200(22-23):6355-6361.

Jin F, Chu P, Xu Z, Zhao J, Zhu M, Fu R, Tong H (2006) Surface modification of W9Cr4V2Mo high-temperature bearing steel by rare earth ion implantation. Surf Coat Technol 201(7):4357-4360.

Jin J, Jin H, Sakai M, Wu C (1997) Improving the surface behaviours of bearing by adding rare-earth Er implantation. Wear 205(1-2):214-219.

Jones A, Bull S (1996) Changing the tribological performance of steels using low energy, high temperature nitrogen ion implantation. Surf Coat Technol 83(1-3):269-274.

Klamecki BE (1976) Friction mechanisms in wood cutting. Wood Sci Technol 10(3):209-214.

Ko P (1998) Tribology in secondary wood machining. Pages 101-120 in S Bahadur and JH Magee, eds. Wear processes in manufacturing, 1st edition. American Society for Testing and Materials, Atlanta, GA.

Kusiak A, Battaglia J, Marchal R (2005) Influence of CrN coating in wood machining from heat flux estimation in the tool. Int J Therm Sci 44(3):289-301.

Labidi C, Collet R, Nouveau C, Beer P, Nicosia S, Djouadi M (2005) Surface treatments of tools used in industrial wood machining. Surf Coat Technol 200(1-4):118-122.

Mandl S, Gunzel R,Moller W, Hilke R, Knosel E, Kunanz K (1998) Characterization of drills implanted with nitrogen plasma immersion ion implantation. Surf Coat Technol 103-104:161-167.

Mikkelsen N, Pedersen J, Straede C (2002) Ion implantation–The job coater’s supplement to coating techniques. Surf Coat Technol 158-159:42-47.

Narojczyk J, Werner Z, Barlak M, Morozow D (2009) The effect of Ti preimplantation on the properties of TiN coatings on HS 6-5-2 high-speed steel. Vacuum 83:228-230.

Narojczyk J, Werner Z, Piekoszewski J (2001) Analysis of the wear process of nitrogen implanted HSS stamping dies. Vacuum 63(4):691-695.

Narojczyk J, Werner Z, Piekoszewski J, SzymczykW(2005) Effects of nitrogen implantation on lifetime of cutting tools made of SK5M tool steel. Vacuum 78(2-4):229-233.

Nouveau C, Labidi C, Martin J, Collet R, Djouadi A (2007) Application of CrAlN coatings on carbide substrates in routing of MDF. Wear 263(7-12):1291-1299.

Olesinska W, Kalinski D, Chmielewski M, Diduszko R, Włosinski WK (2006) Influence of titanium on the formation of a “barrier” layer during joining an AlN ceramic with copper by the CDB technique. J Mater Sci Mater Electron 17:781-788.

Philbin P, Gordon S (2005) Characterisation of the wear behaviour of polycrystalline diamond (PCD) tools when machining wood-based composites. J Mater Process Technol 162-163:665-672.

Piekoszewski J, Olesinska W, Jagielski J, Kalinski D, Chmielewski M, Werner Z, Barlak M, Szymczyk W (2004) Ion implanted nanolayers in AlN for direct bonding with copper. Solid State Phenom 99-100:231-234.

Porankiewicz B (2003) A method to evaluate the chemical properties of particleboard to anticipate and minimize cutting tool wear. Wood Sci Technol 37(1):47-58.

Porankiewicz B, Iskra P, Jozwiak K, Tanaka C, Zborowski W (2008) High-speed steel tool wear during wood cutting in the presence of high-temperature corrosion and mineral contamination. BioResources 3(3):838-858.

Porankiewicz B, Iskra P, Sandak J, Tanaka C, Jozwiak K (2006) High speed steel tool wear after wood milling in the presence of high temperature tribochemical reactions. Wood Sci Technol 40(8):673-682.

Porankiewicz B, Sandak J, Tanaka C (2005) Factors influencing steel tool wear when milling wood. Wood Sci Technol 39(3):225-234.

Porankiewicz B, Wieczorek D, Bocho-Janiszewska A, Klimaszewska E (2016) An attempt to analyze the influence of properties of five African wood species on cemented carbide tool wearing. BioResources 11(1):585-598.

Porankiewicz B, Wieczorek D, Bocho-Janiszewska A, Klimaszewska E, Tanaka C, Darmawan W (2018) A theoretical model for the increases in cutting edge recessions during milling of nine species of wood. Bio-Resources 13(2):3892-3904.

Raebel S, Worzala F, Conrad J (1990) PSII nitrogen implanted M2 tool steel for wear resistance in wood machining tools. Pages 198-207 in S Shaker, ed. Surface engineering, 1st edition. Elsevier Science Publishers Ltd., London, UK.

Rodrııguez R, Medrano A, Rico M, Sanchez R, Martıınez R, Garcııa J (2002) Niche sectors for economically competitive ion implantation treatments. Surf Coat Technol 158-159:48-53.

Rodriguez R, Sanz A, Medrano A (1996) The search for new applications of ion implantation treatments. Surf Coat Technol 84(1-3):594-599.

Rudnicki J, Beer P, Sokołowska A, Marchal R (1998) Low temperature ion nitriding used for improving the durability of the steel knives in the wood rotary peeling. Surf Coat Technol 107(1):20-23.

Sanchez R, Garcia J, Medrano A, Rico M, Martıınez R, Rodrııguez R, Fernandez-Ramos C, Fernandez A (2002) Successive ion implantation of high doses of carbon and nitrogen on steels. Surf Coat Technol 158-159:630-635.

Sharapov E, Wang X, Smirnova E, Wacker JP (2018) Wear behavior of drill bits in wood drilling resistance measurements. Wood Fiber Sci 50(2):154-166.

Sheikh-Ahmad J, Bailey J (1999) High-temperature wear of cemented tungsten carbide tools while machining particleboard and fiberboard. J Wood Sci 45(6):445-455.

Starodubtsev SV, Romanov AM (1962) Passage of charged particles through matter. Academy of Sciences of the Uzbek SSR, Physico-Technical Institute, Tashkent, Russian. 228 pp.

Straede C (1996) Application of ion implantation in tooling industry. Nucl Instrum Methods Phys Res Sect B 113(1-4):161-166.

Straede C, Mikkelsen N (1996) Implementation of ion implantation in European industry. Surf Coat Technol 84(1-3):567-573.

SUSPRE (2001) Interactions of energetic particles. University of Surrey. https://www.surrey.ac.uk/ion-beam-centre/research-areas/interactions-energetic-particles (26 July 2017).

Uglov V, Kholmetskii A, Kuleshov A, Rusalsky D, Rumyanceva I, Wei R, Vajo J (2002) Phase transformation of high speed steel after sequential nitrogen and boron high current density ions implantation. Surf Coat Technol 158-159:349-355.

Verein Deutscher Eisenhuttenleute, Dusseldorf, Germany (1984) Werkstoffkunde stahl. Band 1: Grundlagen. Springer-Verlag Dusseldorf/Verlag Stahleisen GmbH.

Werner Z, Barlak M, Gradzka-Dahlke M, Diduszko R, Szymczyk W, Dabrowski J, Piekoszewski J, Borkowska K (2007) The effect of ion implantation on the wear of Co-Cr-Mo alloy. Vacuum 81(10):1191-1194.

Werner Z, Pochrybniak C, Barlak M, Gosk J, Szczytko J, Twardowski A, Siwek A (2013) Magnetic properties of manganese implanted silicon after pulse plasma annealing. Vacuum 89:113-117.

Yan S, Zhao W, Ruck D, Xue J, Wang Y (1998) Study of tribological properties of high-speed steel implanted by high-dose carbon ions. Surf Coat Technol 103-104:348-352.

Downloads

Published

2019-04-17

Issue

Section

Technical Notes