Creep Functions for Wood Composite Materials

Authors

  • Stephen J. Smulski

Keywords:

Creep, plywood, oriented strandboard, laminated timber, dry-process hardboard

Abstract

Two related functions used to describe the creep of non-wood materials were fitted to data for wood composite materials. The first function, which is linear in its constants, was unsatisfactory for representing the creep of plywood, oriented strandboard, laminated timber, and dry-process hardboard under the given loading and environmental conditions. The second function is nonlinear in its constants. Creep of plywood and oriented strandboard were moderately well represented by this function, while creep of laminated timber and hardboard were exceptionally well represented. Experimental creep data and estimates of empirical constants are presented.

References

ACI. 1988. Prediction of creep, shrinkage and temperature effects in concrete structures. Pages 209R-1-209R-92 in ACI Manual of Concrete Practice 1988. American Concrete Institute, Detroit, MI.nAnderson, J. 1985. The effect of moisture cycling on the creep of glulam beams. Unpublished M.S. Thesis, Washington State University, Pullman, WA. 101 pp.nBodig, J., and B. Jayne. 1982. Mechanics of wood and wood composites. Van Nostrand Reinhold Co., New York, NY. 712 pp.nConway, J. 1967. Numerical methods for creep and rupture analyses. Gordon and Breach, New York, NY. 204 pp.nGerhards, C. 1985. Time-dependent bending deflections of Douglas-fir 2 by 4's. Forest Prod. J. 35(4):18-26.nHoyle, R. 1987. Personal communication. Washington State University. Pullman, WA.nHoyle, R. R. Itani, and J. Eckard. 1986. Creep of Douglas-fir beams due to cyclic humidity fluctuation. Wood Fiber Sci. 18(3):468-477.nKong, F., R. Evans, E. Cohen, and F. Roll, eds. 1983. Handbook of structural concrete. McGraw-Hill Co., New York, NY.nLaufenberg, T. 1987. Personal communication. Forest Products Laboratory. Madison, WI.nO'Halloran, M. 1987. Personal communication. American Plywood Association. Tacoma, WA.nPeleg, M. 1979a. A model for creep and early failure. Mater. Sci. Eng. 40:197-205.nPeleg, M. 1979b. Characterization of the stress relaxation curves of solid foods. J. Food Sci. 44(1):277-281.nPeleg, M. 1980. Linearization of relaxation and creep curves of solid biological materials. J. Rheology 24(4):451-463.nPierce, C., and J. Dinwoodie. 1977. Creep in chipboard. J. Mater. Sci. 12:1955-1960.nSchniewind, A. 1968. Recent progress in the rheology of wood. Wood Sci. Technol. 2(3):188-206.nSenft, J., and S. Suddarth. 1971. An analysis of creep-inducing stress in Sitka spruce. Wood Fiber 2(4):321-327.nSmulski, S., and G. Ifju. 1987. Creep behavior of glass fiber reinforced hardboard. Wood Fiber Sci. 19(4):430-438.nSzabo, T., and G. Ifju. 1970. Influence of stress on creep and moisture distribution in wooden beams under sorption conditions. Wood Sci. 2(3):159-167.n

Downloads

Published

2007-06-22

Issue

Section

Research Contributions