AN INVESTIGATION ON WINDMILL PALM LEAF SHEATH FIBER POWDER-BASED ACTIVATED CARBON FOR DYE ADSORPTION

Authors

  • Jiali Li College of Textiles and Garments, Southwest University, Chongqing, China
  • Tonghua Zhang College of Textile and Garment, Southwest University, Chongqing, China
  • Min Guo College of Textile and Garment, Southwest University, Chongqing, China
  • Lan Cheng College of Textile and Garment, Southwest University, Chongqing, China
  • Shu Wang College of Textile and Garment, Southwest University, Chongqing, China
  • Ruilong Ran College of Textile and Garment, Southwest University, Chongqing, China
  • Yifa Ma Honghe Palm Industry Association, Yunnan, China

Keywords:

Windmill palm leaf sheath fiber, Activated carbon, Methylene blue, Adsorption isotherm, Kinetics, thermodynamics

Abstract

Windmill palm sheath fiber (WPF) is an abundant agricultural by-product and useful resource. To increase its valuable qualities and usefulness, we proposed to prepare WPF-based activated carbon (WPFAC) as a novel adsorbent for adsorbing methylene blue (MB), with the specific aims for pollution treatment. The porous features of WPFAC were assessed based on nitrogen adsorption, and the adsorption capacity was studied by investigating the effect parameters of contact time, initial concentration, pH and temperature. Research results show a combination microporous and mesoporous structure of WPFAC with BET surface of 668.81 m2/g. WPFAC exhibits excellent adsorbing performance, and the maximum monolayer adsorption capacity is up to 51.78 times higher than other absorbents. Meanwhile, the adsorption capacity increased accordingly as the parameters increase. For better understanding the adsorption behavior, isotherms, kinetics and thermodynamic were studied by using the equilibrium data. Investigation results illustrated the equilibrium data were well consistent with the Langmuir isotherm, with a maximum monolayer adsorption capacity of 253.16, 289.85, and 303.95 mg/g at 30, 40, and 50 °C, respectively. The adsorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic parameters: standard enthalpy (ΔH0), standard entropy (ΔS0), and standard free energy (ΔG0) indicated an endothermic and spontaneous absorbing process. WPFAC is a promising material which has high utility values for its amazing adsorption capacity.

References

Ahmad AA, Hameed BH and Aziz N (2007) Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. J Hazard Mater 141: 70-76.

Batzias FA, Sidiras DK (2007) Adsorption by prehydrolised beech sawdust in batch and fixed-bed systems. Bioresour Technol 98: 1208-1217.

Bestani B, Benderdouche N, Benstaali B, Belhakem M and Addou A (2008) Methylene blue and iodine adsorption onto an activated desert plant. Bioresour Technol 99: 8441-8444.

Brunauer S, Emmet P H and Teller F (1938) Adsorption of Gases in Multimolecular Layers, J Am Chem Soc 60: 309-319.

Cheng L, Zhang TH, Guo M and Li XL (2014) Structural characteristics and properties of windmill palm leaf sheath fiber. Wood Fiber Sci 46 (2): 270-279.

Dubinin MM, Radushkevich LV (1947) The Equation of the Characteristic Curve of Activated Charcoal. Proceedings of the Academy of Science. Phys Chem Sect 55: 331.

El Qada EN, Allen SJ and Walker GM (2008) Adsorption of basic dyes from aqueous solution onto activated carbon. Chem Eng J 135: 174-184.

EI-Sayed GO (2011) Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination 272: 225-232.

Fernandez ME, Nunell GV, Bonelli PR and Cukierman AL (2014) Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes. Ind Crop Prod 62: 437-445.

Foo KY, Hameed BH (2011) Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption. Chem Eng J 166: 792-795.

Freundlich HMF (1906) Over the adsorption in solution. J Chem Phys 57: 385-470.

Guo M, Zhang TH, Chen BW and Cheng L (2014) Tensile strength analysis of palm leaf sheath fiber with Weibull distribution. Composites: Part A 62: 45-51.

Hameed BH, Ahmad AL and Latiff KNA (2007) Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigments 75: 143-149.

Hameed BH, Ahmad AA and Aziz N (2007) Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem Eng J 133: 195-203.

Hameed BH, Ahmad AA and Aziz N (2009) Adsorption of reactive dye on palm-oil industry waste: Equilibrium, kinetic and thermodynamic studies. Desalination 247: 551-560.

Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70: 115-124.

Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study. Dyes Pigments 51: 25-40.

Karagöz S, Tay T, Ucar S and Erdem M (2008) Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour Technol 99, 6214-6222.

Kumar KV, Kumaran A (2005) Removal of methylene blue by mango seed kernel powder. Biochemi Eng J 27: 83-93.

Langmuir I (1918) The adsorption of gases on plane surfaces of glass,mica and platinum. J Am Chem Soc 40: 1361-1403.

Liu XH, Yang YL, Shi XX and Li KX (2015) Fast photocatalytic degradation of methylene blue dye using a low-power diode laser. J Hazard Mater 283: 267-275.

Maatar W, Alila S and Boufi S (2013) Cellulose based organogel as an adsorbent for dissolved organic compounds. Ind Crop Prod 49: 33-42.

Macías-García A, Cuerda-Correa EM, Olivares-Marín M, Díaz-Paralejo A and Díaz-Díez MA (2012) Development and characterization of carbon-honeycomb monoliths from kenaf natural fibers: A preliminary study. Ind Crop Prod 35:105-110.

Mahmoud DK, Salleh MAM, Karim WAWA, Idris A and Abidin ZZ (2012) Batch adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies. Chem Eng J 181-182: 449-457.

Martin MJ, Artola A, Balaguer MD and Rigola M (2003) Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chem Eng J 94: 231-239.

Mohanty K, Das D and Biswas MN (2005) Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation, Chem Eng J 115: 121-131.

Tan IAW, Hameed BH and Ahmad AL (2007) Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem Eng J 127: 111-119.

Tan IAW, Ahmad AL and Hameed BH (2008a) Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination 225: 13-28.

Tan IAW, Ahmad AL and Hameed BH (2008b) Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon. Colloids and Surfaces A: Physicochem Eng Aspects 318: 88-96.

Tan IAW, Hameed BH and Ahmad AL (2008) Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem Eng J 137: 462-470.

Tan IAW, Ahmad AL and Hameed BH (2009) Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J Hazard Mater 164: 473-482.

Trevi˜no-Cordero, H, Juárez-Aguilar, LG, Mendoza-Castillo, DI, Hernández-Montoya V, Bonilla-Petriciolet, A and Montes-Morán, MA (2013) Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water. Ind Crop Prod 42: 315-323.

Tseng RL, Tseng SK (2005) Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob. J Colloid Interface Sci 287: 428- 437.

Vieira, SS, Magriotis, ZM, Santos, Nadiene AV, Cardoso, Maria das Gracas and Saczk, AA (2012) Macauba palm (Acrocomia aculeata) cake from biodiesel processing: An efficient and low cost substrate for the adsorption of dyes. Chem Eng J 183: 152-161.

Wang S, Zhu ZH (2007) Effects of acidic treatment of activated carbons on dye adsorption. Dyes Pigments 75: 306-314.

Wu FC, Tseng RL and Juang RS (2005) Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J Colloid Interface Sci 283: 49-56.

Yenisoy-Karakas S, Aygün A, Günes M and Tahtasakal E (2004) Physical and chemical characteristics of polymer-based spherical activated carbon and its ability to adsorb organics. Carbon 42: 477-484.

Zhang TH, Guo M, Cheng L and Li XL (2015) Investigations on the structure and properties of palm leaf sheath fiber. Cellulose 22 (2): 1039-1051.

Zhang Y, Wang WB, Zhang JP, Liu P and Wang AQ (2015) A comparative study about adsorption of natural palygorskite for methylene blue. Chem Eng J 262: 390-398.

Downloads

Published

2016-08-11

Issue

Section

Research Contributions