Determining Juvenile-Mature Wood Transition in Scots Pine Using Latewood Density


  • Udo H. Sauter
  • Rüdiger Mutz
  • B. David Munro


Segmented regression, wood density, juvenile wood, mature wood, juvenile-mature wood transition, Scots pine


Segmented regression models are applied successfully to estimate the cambial age of juvenile-mature wood transition in Scots pine sample trees from slow-grown stands. Mean ring density, earlywood, and latewood density profiles from 99 trees were determined by X-ray densitometric analysis of disks taken at 4-m stem height. The cambial age of transition from juvenile to mature wood is described according to segmented regression models based on latewood density profiles. The time series nature of the density data was considered by using generalized nonlinear regression and restricted maximum likelihood regression procedures. The quadratic-linear fit shows the transition at cambial age of about 22 with a standard deviation of 5 to 7 yr. Segmented regression models are an effective tool to get objective estimates of the juvenile-mature wood transition from density profiles.


Abdel-Gadir, A. Y., and R. L. Krahmer. 1993. Estimating the age of demarcation of juvenile and mature wood in Douglas-fir. Wood Fiber Sci. 25(3):242-249.nBeach, C. M., and J. G. MacKinnon. 1978. A maximum likelihood procedure for regression with autocorrelated errors. Econometrica 46(1):51-58.nBendtsen, B. A. 1978. Properties of wood from improved and intensively managed trees. Forest Prod. J. 28(10):61-72.nBendtsen, B. A., and J. Senft. 1986. Mechanical and anatomical properties in individual growth rings of plantation-grown cottonwood and loblolly pine. Wood Fiber Sci. 18(1):23-38.nBox. G. E. P., and G. M. Jenkins. 1970. Time series analysis. San Francisco, CA.nCook, J. A., and R. J. Barbour. 1989. The use of segmented regression analysis in the determination of juvenile and mature wood properties. Report CFS No. 31, Forintek Canada Corp., Vancouver, BC. 64 pp.nDanborg, F. 1994. Density variations and demarcation of the juvenile wood in Norway spruce. Forskningsserien no. 10-1994. Danish Forest and Landscape Research Institute, Lyngby, Denmark. 78 pp.nDi Lucca, C. M. 1989. Juvenile-mature wood transition. Pages 23-38 in R. M. Kellogg, ed. Second-growth Douglas-fir: Its management and conversion for value. Special Publication No. SP-32. Forintek Canada Corp., Vancouver, BC.nGallant, A. R. 1987. Nonlinear statistical models. John Wiley, New York, NY.nGallant, A. R., and J. J. Goebel. 1976. Nonlinear regression with autocorrelated errors. J. Am. Stat. Assoc. 71:961-967.nJorgensen, B. 1983. Maximum likelihood estimation and large-sample inference for generalized linear and non-linear regression models. Biometrika 70(1):19-28.nJozsa, L. A., J. E. Richards, and S. G. Johnson. 1987. Calibration of Forintek's direct reading X-ray densitometer. Report No. 36a, Forintek Canada Corp., Vancouver, BC. 16 pp.nJozsa, L. A., B. D. Munro, and P. Sen. 1997. Basic wood properties of second-growth western hemlock. Report to the British Columbia Ministry of Forests, Forintek Canada Corp., Vancouver, BC. 57 pp.nJudge, G. G., W. E. Griffiths, R. Carter Hill, H. Lütkephol, and T. C. Lee. 1985. The theory and practice of econometrics. John Wiley, New York, NY.nKrahmer, R. L. 1986. Fundamental anatomy of juvenile and mature wood. Pages 12-16 in Proc. Technical Workshop: Juvenile wood—What does it mean to forest management and forest products? Forest Products Research Society, Madison, WI.nKučera, B. 1994. A hypothesis relating current annual height increment to juvenile wood formation in Norway spruce. Wood Fiber Sci. 26(1):152-167.nLarson, P. R. 1969. Wood formation and the concept of wood quality. Bulletin No. 74, Yale Univ. Sch. For. New Haven, CT. 54 pp.nLeban, J.-M., and A. Dedeckel. 1995. Intratree modeling of wood density in Douglas-fir. Pages 61-77 in EEC Air Project: Forest planning and management tools. Final report.nMork, E. 1928. Die Qualität des Fichten-Holzes unter Rücksichtnahme auf Schleif/Papierholz. Der Papier-Fabrikant 26:741-747.nMutz, R. 1998. Inhomogenität des Roh- und Werkstoffs Holz: Konzeptionelle, methodisch-statistische und empirische Implikationen für holzkundliche Untersuchungen. Kovač, Hamburg, Germany. 336 pp.nPaul, B. H. 1960. The juvenile core in conifers. Tappi 43(1):1-2.nPolge, H. 1966. Établissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d'échantillons préleves à la tarière sur des arbres vivants. Annales des Sciences Forestières 23:1-206.nPolge, H., 1978. Fifteen years of wood radiation densitometry. Wood Science and Technology 12:187-196.nRendle, B. J. 1959. Fast-grown coniferous timber—Some anatomical considerations. Quart J. Forestry, April 1959: 1-7.nPolge, H. 1960. Juvenile and adult wood. J. Inst. Wood Sci. 5:58-61.nSAS Institute Inc. 1989. SAS/STAT User's Guide, Version 6. 4th ed., vol. 2. Cary, NC. 846 pp.nSauter, U. H. 1992. Technologische Holzeigenschaften der Douglasie (Pseudotsuga menziesii (Mirb.) Franco) als Ausprägung unterschiedlicher Wachstumsbedingungen. Diss. Forstwiss. Fakultät Univ. Freiburg, Germany. 221 pp.nSchwarz, G. 1978. Estimating the dimension of a model. Annals Stat. 6:461-464.nSchweingruber, F. 1983. Der Jahrring: Standort, Methodik, Zeit und Klima in der Dendrochronologie. Verlag Paul Haupt, Bern, Switzerland. 234 pp.nZobel, B. J., and J. T. Talbert. 1984. Applied forest tree improvement. John Wiley and Sons, New York, NY.nZobel, B. J., and J. P. van Buijtenen, 1989. Wood variation. Springer, Berlin, Germany. 363 pp.n






Research Contributions