Fiber Length, Tracheid Diameter, and Latewood Percentage in Norway Spruce: Development from Pith Outward

Authors

  • Håkan Lindström

Keywords:

Norway spruce, <i>Picea abies</i>, <i>Picea abies</i> (L.) Karst, silviculture, crown development tree class, wood formation, wood characteristics

Abstract

In a fertilization trial near Stråsan, central Sweden, six net parcels of Norway spruce (Picea abies) planted in 1957 and clear-felled in the winter of 1989/1990 were used to evaluate the influence of growth conditions on wood characteristic development. The six parcels used in the study represented two unfertilized, two medium, and two heavily fertilized treatments. Suppressed, intermediate, and dominant trees were sampled from each parcel, and wood characteristics were determined from pith outwards on every second growth ring. Dependence of wood characteristic development was evaluated in models built on a limited set of growth factors that had a high predictive capability, yet were simple.

Tracheid length was found dependent on logarithm of cambial age and growth ring width, which gave an r2 = 0.87. Earlywood radial tracheid diameter was found dependent on logarithm of cambial age, growth ring width, and site quality, which gave an r2 = 0.67. Earlywood tangential tracheid diameter was found dependent on logarithm of cambial age, growth ring width, and site quality, which gave an r2 = 0.76. Latewood radial tracheid diameter was found dependent on logarithm of cambial age and site quality, which gave an r2 = 0.19. Latewood percentage was found dependent on logarithm of cambial age and growth ring width, which gave an r2 = 0.53. Basic density was found dependent on latewood percentage and the inverted value of earlywood radial tracheid diameter, which gave an r2 = 0.80. Results indicate that changes in growth conditions over time, acting through crown development, will influence wood structure development of Picea abies.

References

Aloni, R. 1992. The control of vascular differentiation. Int. J. Plant. Sci. 153(3):90-92.nAronsson, A., and C. O. Tamm. 1991. Continuous measurement of stand and tree parameters at Stråsan fertilization experiment. (Unpublished). Dept. of Ecology and Environmental Research, Swedish Univ. Agri. Sci., Uppsala, Sweden.nAtmer, B., and T. Thörnqvist. 1982. Fiberegenskaper i gran (Picea abies Karst.) och tall (Pinus silvestris L.). The properties of tracheids in spruce and pine (Pinus silvestris L.). Swedish Univ. Agri. Sci. Dept. of For. Prod. Rep. No. 134. Uppsala, Sweden.nBannan, M. W., and I. L. Bayly. 1956. Cellsize and survival in conifer cambium. Can. J. Bot. 34:769-776.nBendtsen, B. A. 1978. Properties of wood from improved and intensively managed trees. Forest Prod. J. 28(10):61-72.nBrolin, A., A. Norén, and E. G. Ståhl. 1995. Wood and paper characteristics of juvenile Norway spruce: A comparison between a forest and an agricultural stand. Tappi 78(4):203-214.nDraper, N., and H. Smith. 1981. Applied Regression Analysis, 2nd ed. John Wiley and Sons, New York, NY.nDünisch, O., and J. Bauch. 1994. Influence of mineral elements on wood formation of old growth spruce (Picea abies (L.) Karst.) Holzforschung 48(1994)Suppl. 5-14.nElfving, B., and L. Tegnhammar. 1996. Trends of tree growth in Swedish forests 1953-1992: An analysis based on sample trees from the National Forest Inventory. Scand. J. For. Res. 11(1):26-37.nEricson, B. 1960. Studier över den ärftliga volymvikts-variationen hos tall och gran. Royal College of Forestry, Dept. of For. Yield Res. Rep. No. 4. Stockholm, Sweden.nEricson, B. 1966. Gallringens inverkan på vedens torrråvolymvikt, höstvedhalt och kärnvedhalt hos tall och gran. Royal College of Forestry, Dept. of For. Yield Res. Res. Note No. 10. Stockholm, Sweden.nEriksson, H. 1976. Granens produktion i Sverige. Yield of Norway spruce in Sweden. Swedish Royal College of Forestry, Dept. of For. Yield Res. Res. Note No. 41. Stockholm, Sweden.nFritts, H. C., E. A. Vaganov, I. V. Sviderskaya, and A. V. Shashkin. 1991. Climatic variation and tree-ring structure in conifers: Empirical and mechanistic models of tree-ring width, number of cells, cell size, cell-wall thickness and wood density. Clim. Res. (1):97-116.nGartner, B. L. 1995. Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. Pages 125-149 in B. L. Gartner, ed. Plant stems: Physiology and functional morphology. Academic Press, San Diego, CA.nHakkila, P. 1968. Geographical variation of some properties of pine and spruce pulpwood in Finland. Communicationes Instituti Forestalis Fenniae 66.8.:1-59. Helsinki, Finland.nHakkila, P. 1979. Wood density and dry weight tables for pine, spruce and birch stems in Finland. Communicationes Instituti Forestalis Fenniae: (96.3):1-59. Helsinki, Finland.nHakkila, P., and O. Uusvaara. 1968. On the basic density of plantation-grown Norway spruce. Communicationes Instituti Forestalis Fenniae 66.6.:1-22. Helsinki, Finland.nHartig, R. 1892a. Ueber den Wuchs der Fichtenbestände des Forstenrieder und Ebersberger Parkes bei München. Forstl.-naturw. Z. (1):129-140.nHartig, R. 1892b. Ueber den Einfluss den Entwicklungs-gang der Fichte im geschlossen Bestände nach Hohe, Form und Inhalt. Forstl.-naturw. Z. (1):169-185.nJohansson, D. 1940. Über Früh- und Spätholz in schwedischer Fichte und Kiefer und über ihren einfluss auf die Eigenschaften von Sulfit- u. Sulfatzellstoff. Holz. Roh-Werkst. (3):73-78.nJohansson, K. 1993. Influence of initial spacing and tree class on the basic density of Picea abies.Scand. J. For. Res. 8(1):18-27.nJozsa, L. A., and G. R. Middleton. 1994. A discussion of wood quality attributes and their practical implications. Special Publication. No. SP-34. Forintek Canada Corp. Vancouver, B.C.nJozsa, L. A., J. Richards, and S. G. Johnson. 1989. Relative density. Pages 5-22 in R. M. Kellogg, ed. Second growth Douglas-fir: Its management and conversion for value. Special Publication. No. SP-32. Forintek Canada Corp. Vancouver, B.C.nKennedy, R. W. 1995. Coniferous wood quality in the future: Concerns and strategies. Wood Sci. Technol. 29(5):321-338.nKlem, G. G. 1934. Undersökelser av granvirkets kvalitet. Medd. Norske Skogsforsøksv. 5(2): 197-348.nKlem, G. G. 1957. Kvalitetsundersøkelser av norsk og tysk gran. The quality of Norway spruce (Picea abies) of Norwegian and German origin. Medd. Norske Skogforsøksv. 48:285-314.nKliger, I. R., M. Perstorper, G. Johansson, and P. J. Pellicane. 1995. Quality of timber products from Norway spruce. Part 3. Influence of spatial position and growth characteristics on bending stiffness and strength. Wood Sci. Technol. 29(6):397-410.nKucera, B. 1991. Ungdomsved -En realitet I dagens skogsbruk. FAGINFO 8:147-156.nKucera, B. 1992. Ungdomsved -En vedkvalitetsfaktor av betydning. Skogforsk 16:70-77.nKucera, B. 1994. A hypothesis relating current annual height increment to juvenile wood formation in Norway spruce. Wood Fiber Sci. 26(1):152-167.nKärenlampi, P., E. Retulainen, and H. Kolehmainen. 1994. Properties of kraft pulps from different forest stands -theory and experiment. Nordic Pulp Paper Res. J. 4(9):214-218.nKärkkäinen, M. 1984. Effect of tree social status on basic density of Norway spruce. Silva Fennica 18(2):115-120.nKyrkjeeide, P. A. 1990. A wood quality study of suppressed, intermediate and dominant trees of plantation grown Picea abies. Dissertation for Skogsbrukskandidat degree. Forest Products Laboratory, USDA Forest Service, Madison, WI.nLachaud, S. 1989. Participation of auxin and abscisic acid in regulation of seasonal variations in cambial activity and xylogenesis. Trees (1989) 3:125-137.nLarson, P. R. 1963. Stem form development of Forest trees. Forest Sci. Monogr. (5):1-42.nLarson, P. R. 1969. Wood formation and the concept of wood quality. Yale Univ. For. Bull. (74):1-54.nLewark, S. 1981. Untersuchungen von holzmerkmalen junger fichten (Picea abies (L.) Karst). Dissertation. Forstlichen Fakultät, Georg-August-Universität zu Göttingen. Göttingen, Germany.nLindström, H. 1996a. Basic density in Norway spruce. Part I.-A literature review. Wood Fiber Sci 28(1):15-27.nLindström, H. 1996b. Basic density in Norway spruce. Part II. Predicted by stem taper mean growth ring width and factors related to crown development. Wood Fiber Sci. 28(2):240-251.nLindström, H. 1996c. Basic density in Norway spruce. Part III. Development from pith outwards. Wood Fiber Sci. 28(3):000-000.nMadsen, T. L., P. Moltesen, and P. O. Oleson. 1978. The influence of thinning degree on basic density, production of dry matter, branch thickness and number of branches of Norway spruce. Det Forstl. Forsøgsv. Danm. (36): 181-204.nMadsen, T. L., P. Moltesen, and P. O. Oleson. 1985. Effect of fertilization on the basic density and production of dry matter in Norway spruce. Det Forstl. Forsøgsv. Danm. 40(2): 141-172.nMattheck, C., and H. Kubler. 1995. Wood -The internal optimization of trees. Springer-Verlag. Berlin, Heidelberg, New York.nMead, D. J., and C. O. Tamm. 1988. Growth and stem form changes in Picea abies as affected by stand nutrition. Scand. J. For. Res. (3):505-513.nNiklas, K. J. 1992. Plant biomechanics, An engineering approach to plant form and function. The University of Chicago Press. Chicago & London.nNylinder, P. 1953. Volymviktsvariationer hos gran. Medd. Statens Skogsforskningsinstitut. 43(3): -44.nNylinder, P., and E. Hägglund. 1954. The influence of stand and tree properties on yield and quality of sulphite pulp of Swedish spruce. Reports of the forest research institute of Sweden. 44:11.nOlesen, P. O. 1976. The interrelation between basic density and ring width of Norway spruce. Det Forstl. Forsøgsv. Danm. (34):340-359.nOlesen, P. O. 1977. The variation of the basic density level and tracheid width within the juvenile and mature wood of Norway spruce. Forest tree improvement. No. 12. Akademisk Forlag, Copenhagen, Denmark.nOlesen, P. O. 1982. The effect of cyclophysis on tracheid width and basic density in Norway spruce. Forest tree improvement. No. 15. Akademisk Forlag, Copenhagen, Denmark.nPersson, A. 1975. Wood and pulp of Norway spruce and Scots pine at various spacings. Swed. Univ. Agr. Sci. Notes 37.nPerstorper, M., P. J. Pellicane, I. R. Kliger, and G. Johansson. 1995. Norway spruce. Part 1. Optimization, key variables and experimental study. Wood Sci. Technol. 29(3):157-170.nRaven, P. H., R. F. Evert, and S. E. Eichhorn. 1992. Biology of plants. 5th ed. Worth Publishers. New York, NY.nRoberts, L. W., P. B. Gahan, and R. Aloni. 1988. Vascular differentiation and plant growth regulators. Springer Verlag. Berlin, Heidelberg, New York, London, Paris, Tokyo.nSAS Institute. 1994. SAS/STAT User's Guide. Version 6.09. 4th ed. Vol. 1, 2.nSavidge, R. A. 1993. Formation of annual rings in trees. Pages 343-363 in L. Rensing, ed. Oscillations and morphogenesis. Marcel Dekker, Inc. New York, Basel, Hong Kong.nSmith, D. M. 1965. Rapid measurement of tracheid cross-sectional dimensions of conifers: Its application to specific gravity determinations. Forest Prod. J. 15(8):325-334.nTamm, C. O., A. Aronsson, and H. Burgtorf. 1974. The optimum nutrition experiment Stråsan. A brief description of an experiment in a young stand of Norway spruce (Picea abies Karst.) Res. Note. 17, Royal Coll. For. Dep of Forest Ecology and Forest Soils Stockholm, Sweden. 29 pp.nThörnqvist, T. 1993. Juvenile wood in coniferous trees. Report D13:1993. Swedish Council for Building Research, Stockholm, Sweden.nTimell, T. 1986. Compression wood in gymnosperms. Springer Verlag. Berlin, New York, Tokyo.nTyrväinen, J. 1995. Wood and fiber properties of Norway Spruce and its suitability for thermomechanical pulping. Acta Forestalia Fennica (249):1-155.nWareing, P. F., and I. D. J. Phillips. 1970. The control of growth & differentiation in plants. Pergamon Press. Oxford, New York, Toronto, Sydney, Braunschweig.nZobel, B. J., and J. Van Buijtenen. 1989. Wood variation. Its causes and control. Springer Verlag. Berlin, New York, Tokyo.n

Downloads

Published

2007-06-19

Issue

Section

Research Contributions