Ultrastructural Characteristics of Red Maple (<i>Acer Rubrum</i> L.) Wood


  • E. A. Wheeler


Red maple, Acer rubrum, transmission electron microscopy, intervessel pitting, parenchyma pitting, pits


The anatomy of red maple (Acer rubrum L.) was examined using the transmission electron microscope. Direct carbon replicas and ultrathin sections of inner and outer sapwood and inner and outer heartwood were prepared. In cross-sectional view sapwood intervessel pit membranes appear thin; in surface views of air-dried and extracted samples of the second sapwood ring and inner sapwood, openings in the intervessel pit membranes are visible. Intervessel pit membranes are permeated with extractives in the heartwood. Vessel-ray parenchyma pits have been described as similar to intervessel pits; but differences in shape, apertures, and pit membranes were detected in this study. The ray parenchyma cells appear different in ultrastructural details from those in species that have been studied with the transmission electron microscope as they do not have well-defined protective layers in the sapwood when they are adjacent to vessels, plasmodesmata channels are not apparent in the parenchyma-parenchyma pits, and there are no pits to the intercellular spaces in the rays. Red maple is an unusual hardwood as it has longitudinal intercellular spaces adjacent to the fibers; the appearance of these spaces is similar to that of the longitudinal intercellular spaces in members of the conifer family, Araucariaceae.


Bolton, A. J., P. Jardine, and G. L. Jones. 1975. Interstitial spaces. A review and observations on some Araucariaceae. Int. Assoc. Wood. Anat. Bull.1975(1):3-12.nBonner, L. D., and R. J. Thomas. 1972. The ultrastructure of intercellular passageways in vessels of yellow poplar. 1: Vessel pitting. Wood Sci. Tech.6:196-203.nBraun, H. J. 1970. Funktionelle Histologie der Sekundären Sprossachse. I. Das Holz. Handbuch der PflanzenanatomieIX(1):1-190. Gebrüder Borntraeger, Berlin and Stuttgart.nCarr, D. J., K. Oates, and S. G. M. Carr. 1980. Studies on intercellular pectic strands of leaf palisade parenchyma. Ann. Bot.45:403-413.nCôté, W. A., Jr., Z. Koran, and A. C. Day. 1964. Replica techniques for electron microscopy of wood and paper. Tappi47:477-484.nHarada, H. 1965. Ultrastructure of angiosperm vessels and ray parenchyma. Pages 235-249 in W. A. Côté, ed., Cellular ultrastructure of woody plants. Syracuse University Press, Syracuse, NY.nHarlow, W. M., and E. S. Harrar. 1969. Textbook of dendrology. 5th ed. McGraw-Hill, New York, NY.nHart, C. A., and R. J. Thomas. 1967. Mechanism of bordered pit aspiration as caused by capillarity. For. Prod. J.17(11):61-68.nHuber, B. 1935. Die physiologische Bedeutung der Ring- und Zerstreutporigkeit. Ber. Dtsch. Bot. Ges.53:711-719.nHusin, M. 1977. The ultrastructure of intervessel pit membranes in the outermost growth rings of sycamore and yellow poplar. M. W. P. S. Report, School Forest Resources, North Carolina State University, Raleigh, NC.nIsebrands, J. G., and R. A. Parham. 1974. Tension wood anatomy of short-rotation Populus spp. before and after kraft pulping. Wood Sci.6:256-265.nMacLean, J. D. 1952. Preservative treatment of wood by pressure methods. USDA Handbook 40, 160 pp.nMetcalfe, C. R., and L. Chalk. 1950. Anatomy of the dicotyledons. Clarendon Press, Oxford.nPanshin, A. J., and C. deZeeuw. 1980. Textbook of wood technology, vol. 1, 4th ed., McGraw-Hill, New York, NY.nParham, R. A. 1973. On the substructure of scalariform perforation plates. Wood Fiber4:342-346.nParham, R. A., and H. Kaustinen. 1973. On the morphology of spiral thickenings. Int. Assoc. Wood Anat. Bull.1973(2):8-17.nPhillips, E. W. J. 1933. Movement of the pit membrane in coniferous woods, with special reference to preservative treatment. Forestry J. Soc. Foresters7:109-120.nPreston, R. D. 1974. The physical biology of plant cell walls. Chapman and Hall, London.nPreusser, H. J., H. H. Dietrichs, and H. Gottwald. 1961. Elektronenmikroskopische Untersuchungen an Ultradunnschnitten des Markstrahlparenchyms der Rotbuche. Holzforschung15(3):65-75.nSchmid, R. 1965. The fine structure of pits in hardwoods. Pages 291-304 in W. A. Côté, ed. Cellular ultrastructure of woody plants. Syracuse University Press, Syracuse, NY.nStark, E. W. 1954. Wood anatomy of the Aceraceae indigenous to the United States. Sta. Bull. Purdue University Agric. Exp. Sta., Indiana, No. 606, 26 pp.nTeesdale, C. H., and J. D. MacLean. 1918. Relative resistance of various hardwoods to injection with creosote. USDA Bull. 606, 36 pp.nThomas, R. J. 1976. Anatomical features affecting liquid penetrability in three hardwood species. Wood Fiber7(4):256-263.nThomas, R. J., and D. D. Nicholas. 1966. Pit membrane structure in loblolly pine as influenced by solvent exchange drying. For. Prod. J.16(3):53-56.nWardrop, A. B. 1964. The structure and formation of the cell wall. Pages 87-134 in M. H. Zimmermann, ed. The formation of wood in forest trees. Academic Press, New York, NY.nWheeler, E. A., and R. J. Thomas. 1981. Ultrastructural characteristics of mature wood of southern red oak (Quercus falcata Michx.) and white oak (Quercus alba L.). Wood Fiber13(3):169-181.nZimmermann, M. H., and C. L. Brown. 1971. Trees: structure and function Springer-Verlag, New York, NY.nZweypfennig, R. C. V. J. 1978. A hypothesis on the function of vestured pits. Int. Assoc. Wood Anat. Bull.1978(1):13-15.n






Research Contributions