An Adaptive Wood Composite: Theory

Authors

  • Watanachai Smittakorn
  • Paul R. Heyliger

Keywords:

Adaptive wood composite, laminated plate, hygrothermopiezoelectric effect, discrete-layer model, finite element model

Abstract

A theoretical model is presented for the steady-state and transient behavior of adaptive wood composite plates composed of layers of wood and other piezoelectric materials. Effects of the mechanical, electrical, temperature, and moisture fields are studied simultaneously using a discrete-layer model of the governing equations. These are solved using the finite element method. The computational model employs a one-dimensional Lagrange linear interpolation function in the through-thickness direction and two-dimensional quadratic finite element for the in-plane approximations, treating the displacements, potential, temperature, and moisture as the nodal unknowns. Representative examples of adaptive wood composites are modeled and potential applications are discussed.

References

Bathe, K. J. 1996. Finite element procedures. Prentice-Hall, Englewood Cliffs, NJ.nBodig, J., and B. A. Jayne. 1982. Mechanics of wood and wood composites. Van Nostrand Reinhold, New York, NY.nBreyer, D. E. 1993. Design of wood structures. McGraw-Hill, New York, NY.nCady, W. G. 1964. Piezoelectricity, Rev. ed., vols. I and II. Dover Publications, New York, NY.nChoong, E. T., T. F. Shupe, and Y. Chen. 1999. Effect of steaming and hot-water soaking on extractive distribution and moisture diffusivity in southern pine during drying. Wood Fiber Sci.31(2):143-150.nCloutier, A., and Y. Fortin. 1993. A model of moisture movement in wood based on water potential and the determination of the effective water conductivity. Wood Sci. Technol.27:95-114.nCloutier, A., and G. Dhatt. 1992. A wood drying finite element model based on the water potential concept. Drying Technol.10(5):1151-1181.nDesch, H. E., and J. M. Dinwoodie. 1996. Timber: Structure, properties, conversion and use, 7th ed. Food Products Press, Binghamton, NY.nFukada, E. 1968. Piezoelectricity as a fundamental property of wood. Wood Sci. Technol.2:299-307.nGui, Y. Q., E. W. Jones, F. W. Taylor, and C. A. Issa. 1994. An application of finite element analysis to wood drying. Wood Fiber Sci.26(2):281-293.nHaygreen, J. G., and J. L. Bowyer. 1982. Forest products and wood science. The Iowa State University Press, Ames, IA.nHeyliger, P. R. 1994. Static behavior of laminated elastic/piezoelectric plates. AIAA J.32:2481-2484.nHeyliger, P. R. 1997. Exact solutions for simply supported laminated piezoelectric plates. J. Appl. Mech.64:299-306.nHeyliger, P. R., and D. A. Saravanos. 1995. Exact free vibration analysis of laminated plates with embedded piezoelectric layers. J. Acoust. Soc. Am.98:1547-1557.nHeyliger, P. R., G. Ramirez, and D. A. Saravanos. 1994. Coupled discrete-layer finite element models for laminated piezoelectric plates. Comm. Numerical Methods in Eng.10:971-981.nHyer, M. W. 1998. Stress analysis of fiber-reinforced composite materials. WCB/McGraw-Hill, Boston, MA.nIrudayaraj, J. K., K. Haghighi, and R. L. Stroshine. 1990. Nonlinear finite element analysis of coupled heat and mass transfer problems with an application to timber drying. Drying Technol.8(4):731-749.nJones, R. M. 1975. Mechanics of composite materials. McGraw-Hill, New York, NY.nKnuffel, W., and A. Pizzi. 1986. The piezoelectric effect in structural timber. Holzforschung40:157-162.nLang, E. M., J. R. Loferski, and J. D. Dolan. 1995. Hygroscopic deformation of wood-based composite panels. Forest Prod. J.45(3):67-70.nLee, H. J., and D. A. Saravanos. 1997. Generalized finite element formulation for smart multilayered thermal piezoelectric composite plates. Int. J. Solids Struct.34(26):3355-3371.nMason, W. P. 1950. Piezoelectric crystals and their application to ultrasonics. D. Van Nostrand, New York, NY.nMcMillen, J. 1955. Drying stresses in red oak. Forest Prod. J.5(1):71-76.nMindlin, R. D. 1974. Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. of Solids Struct.10(6):625-637.nMorgan, K., H. R. Thomas, and R. W. Lewis. 1982. Numerical modeling of stress reversal in timber drying. Wood Sci.15(2):139-149.nMougel, E., A. L. Beraldo, and Z. Zoulalian. 1995. Controlled dimensional variations of a wood-cement composite. Holzforschung49:471-479.nNowacki, W. 1975. Dynamic problems of thermoelasticity. Noordhoff International Publishing, Leyden, The Netherlands.nPagano, N. J. 1970. Exact solutions for rectangular bidirectional composites and sandwich plates. J. Composite Mater.4:20-34.nPauley, K. E., and S. B. Dong. 1976. Analysis of plane waves in laminated piezoelectric plates. Wave Electronics1:265-285.nPlumb, O. A., C. A. Brown, and B. A. Olmstead. 1984. Experimental measurements of heat and mass transfer during convective drying of southern pine. Wood Sci. Technol.18:187-204.nRay, M. C., R. Bhattacharya, and B. Samata. 1993. Exact solutions for static analysis of intelligent structures. AIAA J.31:1684-1691.nReddy, J. N. 1987. A generalization of two-dimensional theories of laminated composite plates. Communications in Appl. Numerical Methods3:173-180.nReddy, J. N. 1989. On the generalization of displacement-based laminate theories. Appl. Mechanics Rev.42(11) Part 2:S213-S222.nReddy, J. N. 1993. An introduction to the finite element method, 2nd ed. McGraw-Hill, New York, NY.nReddy, J. N. 1997. Mechanics of laminated composite plates: theory and analysis. CRC Press, Boca Raton, FL.nRodgers, O. E. 1991. Effect on plate frequencies of local wood removal from violin plates supported at the edges. CAS Journal.1:7-18.nSaravanos, D. A., P. R. Heyliger, and D. A. Hopkins. 1997. Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates. Int. J. Solids Struct.34(3):359-378.nSchumacher, R. 1988. Compliances of wood for violin top plates. J. Acoust. Soc. Am.84:1223-1228.nSharp, D. 1994. Composite structural wood products-manufacturing and application. J. Inst. Wood Sci.13: 442-446.nSiau, J. F. 1984. Transport processes in wood. Springer-Verlag, Berlin Heidelberg, Germany.nSih, G. C., J. G. Michopoulos, and S. C. Chou. 1986. Hygrothermoelasticity. Martinus Nijhoff, Dordrecht, The Netherlands.nSimpson, W. T. 1973. Predicting equilibrium moisture content of wood by mathematical models. Wood Fiber5(1): 41-49.nSkaar, C. 1988. Wood-water relations. Springer-Verlag, New York, NY.nSmittakorn, W., and P. R. Heyliger. 2000. A discrete-layer model of laminated hygrothermopiezoelectric plates. Mech. Composite Maters. Struc.7:79-104.nTauchert, T. R. 1992. Piezothermoelastic behavior of a laminated plate. J. Thermal Stresses15:25-37.nThomas, H. R., R. W. Lewis, and K. Morgan. 1980. An application of the finite element method to the drying of timber. Wood Fiber11(4):237-243.nTremblay, C., A. Cloutier, and B. Grandjean. 1999. Experimental determination of the ratio of vapor diffusion to the total water movement in wood during drying. Wood Fiber Sci.31(3):235-248.nTsoumis, G. T. 1991. Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold, New York, NY.nVoight, W. 1928. Lehrbuch der Kristallphysik, 2nd ed. B. G. Teubner, Leipzig, Germany.nWhitney, J. M., and J. E. Ashton. 1971. Effect of environment on the elastic response of layered composite plates. Am. Inst. Aeronautics Astronautics J.9:1708-1713.nXu, D., and O. Suchsland. 1996. A modified elastic approach to the theoretical determination of the hygroscopic warping of laminated wood panels. Wood Fiber Sci.28(2):194-204.nXu, K., A. K. Noor, and Y. Y. Tang. 1995. Three-dimensional solutions for coupled thermoelectroelastic response of multilayered plates. Computer Methods Appl. Mech. Eng.126:355-371.n

Downloads

Published

2007-06-05

Issue

Section

Research Contributions