Influence of Wetwood on Pulsed-Current Resistances in Lumber Before and During Kiln-Drying

Authors

  • James C. Ward

Keywords:

Wetwood, bacteria, electric resistance, kiln-drying

Abstract

Measurements of resistance to a pulsed electric current were lower in wetwood of aspen (Populus tremuloides) and white fir (Abies concolor) than in normal wood—i.e., sapwood and heartwood—both before and during kiln-drying. The physicochemical properties of wetwood associated with lower resistances are apparently due to invasion of the living tree by bacteria; these bacteria may concentrate excess amounts of ions as well as chemically altering the ion-binding nature of cellular surfaces in the wood. Wetwood also caused discrepancies in the estimation of fiber saturation points (FSP) from measurements of shrinkage and of pulsed-current resistances taken during kiln-drying. Fiber saturation point discrepancies between wetwood and normal wood indicate a need to develop electronic measuring devices in lumber charges, for computerized control of kiln-drying, that will compensate for wetwood.

References

Ahlgren, P. A., J. R. Wood, and D. A. I. Goring. 1972. The fiber saturation point of various morphological subdivisions of Douglas-fir and aspen wood. Wood Sci. Technol.6:81-84.nBauch, J., P. Klein, A. Frühwald, and H. Brill. 1975. Alterations of wood characteristics in Abies alba Mill, due to "fir-dying" and considerations concerning its origin. Eur. J. For. Pathol.9(6):321-331.nBerchtold, R., M. Alcubilla, and K. E. Rehfuess. 1981. [Site-related investigations with regard to the silver fir disease: Comparison of affected and healthy trees by means of foliar and phloem analysis.] Standortskundliche Studien zum Tannensterben: Nadel- und bastanalytischer Vergleich zwischen befallenen und gesunden Bäeumen. Forstwiss. Centralbl.100(3-4):236-253.nBeveridge, T. J., and S. F. Koval. 1981. Binding of metals to cell envelopes of Escherichia coli K-12. Appl. Environ. Microbiol. 42(2):325-335.nBrown, J. H., R. W. Davidson, and C. Skaar. 1963. Mechanism of electrical conduction in wood. For. Prod. J.13(10):455-459.nBrunner, R. 1981. [Present control techniques for lumber drying. 3: Computerized control.] Regelungstechnik für die Schnittholztrocknung heute. Teil 3: Computer-Steuerungen. Holz Roh-Werkst.39(1):11-15.nComstock, G. L. 1975. Energy requirements for drying of wood products. Pages 8-12 in Wood residues as an energy source. Proc. P-75-13, Forest Prod. Res. Soc., Madison, WI.nCouture, R. F., and J. L. Hill. 1974. Improved resistance moisture measurement techniques: Pulsed current meter and wood element sensors. For. Prod. J.24(4):17-23.nDavidson, R. W. 1958. The effect of temperature on the electrical resistance of wood. For. Prod. J.8(5):160-164.nFeist, W. C., and H. Tarkow. 1967. Polymer exclusion in wood substance: a new procedure for measuring fiber saturation points. For. Prod. J.24(4):17-23.nHill, J. L., and R. H. Munkittrick. 1970. Performance of remote sensing devices. For. Prod. J.20(8):39-46.nHillis, W. E. 1977. Secondary changes in wood. In F. A. Loewus and V. C. Runeckles, eds., Recent advances in phytochemistry11:247-309. Plenum Press, NY.nJames, W. L. 1980. Effects of wood preservatives on electric moisture meter readings. USDA Forest Serv. Res. Note FPL-0106. Forest Prod. Lab., Madison, WI.nJames, W. L., and R. S. Boone. 1982. Capacitive in-kiln wood moisture content monitors: Principles of operation and use. Wood Sci.14(4):146-164.nKordes, W. 1980a. [Present control techniques for lumber drying. 1: Drying techniques and control-data survey.] Regelungstechnik für die Schnittholztrocknung heute. Teil 1: Trocknungstechnik und Messwerterfassung. Holz Roh- Werkst.38(11):419-422.nKordes, W. 1980b. [Present control techniques for lumber drying. 2: Conventional controlling devices.] Regelungstechnik für die Schnittholztrocknung heute. Teil 2: Konventionelle Regelanlagen. Holz Roh- Werkst.38(12):445-448.nKozlik, C. J., and J. C. Ward. 1981. Properties and kiln-drying characteristics of young-growth western hemlock dimension lumber. For. Prod. J.31(6):45-53.nKozlik, C. J., R. L. Krahmer, and R. T. Lin. 1972. Drying and other related properties of western hemlock sinker heartwood. Wood Fiber4(2):99-111.nKubler, H. 1973. Role of moisture in hygrothermal recovery of wood. Wood Sci.5(3):193-204.nKuroda, N., and J. Tsutsumi. 1981. [Effect of moisture content and temperature on frequency dependence of conductivity of wood.] Mokuzai Gakkaishi27(9):665-670.nKuroda, N., and J. Tsutsumi. 1982. [Anisotropic behavior of electrical conduction in wood.] Mokuzai Gakkaishi28(1):25-30.nLangwig, J. E. 1971. Trace element-electrical conductivity relationships in wood. Ph. D. thesis. State Univ. Coll. For., Syracuse Univ., Syracuse, NY.nLangwig, J. E., and J. A. Meyer. 1973. Ion migration in wood verified by Neutron Activation Analysis. Wood Sci.6(1):39-50.nLin, R. T. 1965. A study on the electrical conduction in wood. For. Prod. J.5(11):506-514.nLin, R. T., and E. P. Lancaster. 1973. Longitudinal water permeability of western hemlock. II. Unsteady-state permeability. Wood Fiber4(4):290-297.nPiirto, D. D., and W. W. Wilcox. 1978. Critical evaluation of the pulsed-current resistance meter for detection of decay in wood. For. Prod. J.28(1):52-57.nShigo, A. L., and A. Shigo. 1974. Detection of discoloration and decay in living trees and utility poles. USDA Forest Serv. Res. Pap. NE 294. Northeast Forest Exp. Sta., Broomall, PA.nShortle, W. C. 1982. Decaying Douglas-fir wood: Ionization associated with resistance to a pulsed electric current. Wood Sci.15(1):29-32.nSkaar, C. 1964. Some factors involved in the electrical determination of moisture gradients in wood. For. Prod. J.14(6):239-244.nStamm, A. J. 1971. Review of nine methods for determining the fiber saturation points of wood and wood products. Wood Sci.4(2):114-128.nStone, J. E., and A. M. Scallan. 1967. The effect of component removal upon the porous structure of the cell wall of wood. II. Swelling in water and the fiber saturation point. Tappi50(10):496-501.nTarkow, H., and W. C. Feist. 1969. A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. In Advances in chemistry series No. 95:197-218. American Chemical Society, Washington, D.C.nTattar, T. A., A. L. Shigo, and T. Chase. 1972. Relationship between the degree of resistance to pulsed electric current and wood in progressive stages of discoloration and decay in living trees. Can. J. For. Res.2(3):236-243.nU.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 1974. Wood handbook: Wood as an engineering material. USDA Agric. Handb. No. 72, rev. U.S. Gov. Printing Office, Washington, DC.nWard, J. C., and C. J. Kozlik. 1975. Kiln drying sinker heartwood from young-growth western hemlock: Preliminary evaluation. Proc. 26th Ann. Mtg. Western Dry Kiln Clubs. Oregon State Univ., Corvallis, OR. Pp. 44-63.nWard, J. C., and W. Y. Pong. 1980. Wetwood in trees—Overview of a timber resource problem. USDA Forest Serv. Gen. Tech. Rep. PNW-112. Pac. Northwest Forest Range Exp. Stn., Portland, OR.nWard, J. C., and D. Shedd. 1981. Characteristics for presorting white fir lumber with wetwood. Proc. 32nd Annu. Meet. West. Dry Kiln Clubs, Oregon State Univ., Corvallis, OR. Pp. 32-47.nWard, J. C., and J. G. Zeikus. 1980. Bacteriological, chemical and physical properties of wetwood in living trees. Pages 133-166 in J. Bauch, ed., Natural variations of wood properties. Mitt. Bundesforschungsanstalt f. Forst- und Holzwirtschaft, Nr. 131. Max Wiedehusen, Hamburg.n

Downloads

Published

2007-06-27

Issue

Section

Research Contributions