A Mechanistic Approach to Crystallite Length as Related to Cell-Wall Structure

Authors

  • M. Lotfy
  • M. El-osta
  • R. M. Kellogg
  • R. O. Foschi
  • R. G. Butters

Keywords:

Abies lasiocarpa, Tsuga heterophylla, Pseudotsuga menziesii, Populus tremuloides, Betula papyrifera, Acer macrophyllum, line-broadening, X-ray diffraction, cell diameter, degree of orientation, microfibril angle

Abstract

A tentative mechanistic model is proposed that relates variation in crystallite length in wood to some physical conditions under which the crystallite may have been formed, namely the curvature and ultrastructure of the microfibril. Over most of the experimental data range, representing both hardwood and softwood samples, the model allows reasonably good prediction of the effect of crystallite orientation angle and radial distance from the cell center. As the angle increases and radial distance decreases, the average crystallite length becomes smaller.

References

Berlyn, G. P. 1970. Ultrastructural and molecular concepts of cell-wall formation. Wood Fiber 2(3):196-227.nBourret, A., H. Chanzy, and R. Lazaro. 1972. Crystallite features of Valonia cellulose by electron diffraction and dark field electron microscopy. Biopolymers 11(4):893-898.nBramhall, G., and T. A. McLauchlan. 1970. The preparation of microsections by sawing. Wood Fiber 2(1):67-69.nCaulfield, D. F. 1971. Crystallite sizes in wet and dry Valonia ventricosa. Text. Res. J. 41: 267-269.nEl-osta, M. L. M., and R. W. Wellwood. 1972. Short-term creep as related to cell-wall crystallinity. Wood Fiber 4(3):204-211.nFengel, D. 1970. Ultrastructural behavior of cell-wall polysaccharides. Tappi 53(3):497-503.nFletcher, R., and M. Powell. 1963. A rapidly convergent descent method for minimization. Comput. J. 6:163-168 (FMFP routine in IBM's Scientific Package).nFrey-Wyssling, A., and K. Mühlethaler. 1965. Ultrastructural plant cytology. Elsevier, New York. Pp. 34-40.nHeyn, A. N. J. 1969. The elementary fibril and supermolecular structure of cellulose in softwood fiber. Pages 27-49 in D. H. Page, ed. The physics and chemistry of wood pulp fibers. Tappi Stap Ser. No. 8.nKlug, H. P., and L. E. Alexander. 1954. X-ray diffraction procedure. Wiley, New York. Pp. 491-538.nMann, L., L. Roldan-Gonzalez, and H. J. Wellard. 1960. Crystallite modification of cellulose. Part IV. Determination of X-ray intensity data. J. Polymer Sci. 42:165-171.nMarton, R., P. Rushton, J. S. Sacco, and K. Sumiya. 1972. Dimensions and ultrastructure in growing fibers. Tappi 55(10):1499-1504.nNieduszynski, I., and R. D. Preston. 1970. Crystallite size in natural cellulose. Nature 225:273-274.nNomura, T., and T. Yamada. 1972. Structural observation on wood and bamboo by X-ray. Wood Res. (Japan) 52:1-12.nPreston, R. D. 1971. Negative staining and cellulose microfibril size. J. Microsc. 93:7-13.nShenouda, S. G., and A. Viswanathan. 1972. Crystalline character of native and chemically treated Egyptian cottons. II. Computation of variance of X-ray line profile and para-crystalline lattice distortions. J. Appl. Polymer Sci. 16:395-406.nViswanathan, A., and V. Venkatakrishnan. 1969. Disorder in cellulosic fibers. J. Appl. Polymer Sci. 13:785-795.n

Downloads

Published

2007-06-05

Issue

Section

Research Contributions