Effects of Component Ratio of the Face and Core Laminae on Static Bending Strength Performance of Three-Ply Cross-Laminated Wood Panels Made With Sugi (<i>Cryptomeria Japonica</i>)
Keywords:
Anisotropy, annual ring angle, cross-laminated wood panels, modulus of elasticity, shear forceAbstract
In order to improve the bending strength performance of three-ply laminated wood panels and use them as construction-grade panel materials, twelve types of three-ply cross-laminated wood panels whose percentages of core lamina thickness versus total lamina thickness were 33%, 50%, and 80% were made with sugi (Japanese cedar), and the effect of component ratio of the face and core laminae on their static bending strength performance was investigated.
The moduli of elasticity (MOE), proportional limit stresses and moduli of rupture (MOR), perpendicular (C⊥type) and parallel (C∥ type) to the grain of face laminae markedly increased or decreased with increasing percentage of core lamina thickness. The percentages of core lamina thickness at which each strength property value of C∥ type became equal to that of C⊥ type ranged from 65% to 80%. At each percentage of core lamina thickness, the MOE and proportional limit stress of C∥ type were higher in C∥(45) specimens having perpendicular-direction lamina of 45° annual ring angle in the core than in C∥(90) specimens having perpendicular-direction lamina of 90° in the core, whereas there was little difference in MOR between C∥(45) specimens and C∥(90) specimens. For 45° specimens having the core lamina thickness from 60% to 70%, MOE as well as MOR parallel and perpendicular to the grain of face laminae exceeded the corresponding requirement values of structural plywood with 21.0-mm thickness specified in Japanese Agricultural Standards.
The measured MOEs of C⊥ type were nearly equal to those calculated from true MOEs of individual laminae, whereas the measured MOEs of C∥ type were smaller than the calculated MOEs, owing to the effect of deflection caused by shear forces. The percentages of deflection caused by shear force versus total deflection (Ys) were much greater in C∥(90) specimens than in C∥(45) specimens. The Ys for the C∥(45) specimen decreased with increasing percentage of core lamina thickness, while Ys for the C∥(90) specimen minimally varied.
References
Asano, I., and K. Tuzuki. 1963. Some anisotropic properties on the strength of the plywood. J. Soc. Mater. Sci. Jpn12(121):761-768.nJapanese Agricultural Standards. 1993. Structural laminated veneer lumber. Bending test. Japanese Agricultural Standards Association, Tokyo, Japan. Pp. 18-20.nJapanese Agricultural Standards. 1994. Structural plywood. Bending test. Japanese Agricultural Standards Association, Tokyo, Japan. Pp. 18-21.nOkuma M. 1966. Studies on mechanical properties of plywood II. Young's modulus in bending. Mokuzai Gakkaishi12(1):15-20.nPark H. M., M. Fushitani, T. Ohtsuka, T. Nakajima, K. Sato and H. S. Byeon. 2001. Effect of annual ring angle on static bending strength performances of crosslaminated woods made with sugi wood. Mokuzai Gakkaishi47:22-32.nPark H. M., M. Fushitani, K. Sato, T. Kubo and H. S. Byeon. 2003. Static bending strength performances of cross-laminated woods made with five species. J. Wood Sci.49:411-417.nSakai J. 1970. Strength of structures. Gihodo, Tokyo. P. 77.nUtokuchi T., Y. Kawada, M. Kuranishi. 1998. Strength of materials. Shokabo. Pp. 270-271.n
Downloads
Published
Issue
Section
License
The copyright of an article published in Wood and Fiber Science is transferred to the Society of Wood Science and Technology (for U. S. Government employees: to the extent transferable), effective if and when the article is accepted for publication. This transfer grants the Society of Wood Science and Technology permission to republish all or any part of the article in any form, e.g., reprints for sale, microfiche, proceedings, etc. However, the authors reserve the following as set forth in the Copyright Law:
1. All proprietary rights other than copyright, such as patent rights.
2. The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In the case of whole articles, such third parties must obtain Society of Wood Science and Technology written permission as well. However, the Society may grant rights with respect to Journal issues as a whole.
3. The right to use all or part of this article in future works of their own, such as lectures, press releases, reviews, text books, or reprint books.