Genetic Variation in Wood Mechanical Properties of Calycophyllum Spruceanum at an Early Age in the Peruvian Amazon


  • Carmen Sotelo Montes
  • Jean Beaulieu
  • Roger E. Hernández


Provenance, family, environment, heritability, phenotypic and genetic correlations, juvenile wood


Calycophyllum spruceanum (Benth.) Hook. f. ex Shum. is an important timber species of the Peruvian Amazon Basin. Due to overexploitation in natural populations, users are turning to young trees of potentially lower quality. Therefore, variation in juvenile wood properties should be investigated to determine whether wood quality can be maintained or, if necessary, improved by breeding. A provenance/progeny test was established to evaluate genetic variation in growth and wood properties of young trees, the strength of their genetic control, as well as their interrelationships both at the genetic and phenotypic levels. This paper presents results obtained for ultimate crushing strength (σL), the static compliance coefficient (S11) in longitudinal compression, the dynamic s11 in the longitudinal direction (determined by ultrasound), and air-dry density at 39 months. Results indicate that the mechanical properties of juvenile wood of this species are adequate for structural uses. There was significant variation in all wood properties due to families within provenances, and in all but dynamic s11 due to provenances. Families accounted for a larger percentage of the total phenotypic variance than provenances. Heritability estimates were higher for σL and static s11 than for dynamic s11 and density. Genetic correlations indicate that selecting trees with denser wood and/or faster growth would have a positive effect on some mechanical properties. A non-destructive ultrasonic method appeared suitable for estimating juvenile wood strength and stiffness of this species.


American Society for Testing and Materials (ASTM). 1994. Standard methods of testing small clear specimens of timber. ASTM D143-94. Annual book of ASTM Standards 4.10. Philadelphia, PA. Pages 23-52.nBecker, W. A. 1984. Manual of quantitative genetics, 4th ed. Academic Enterprises, Pullman, WA. 191 pp.nBhat, K. M., and P. B. Priya. 2004. Influence of provenance variation on wood properties of teak from the Western Ghat region in India. IAWA J. 25(3):273-282.nBodig, J., and B. A. Jayne. 1982. Mechanics of wood and wood composites. Van Nostrand Reinhold, New York, NY. 736 pp.nBowyer, J. L., R. Shmulsky, and J. G. Haygreen. 2003. Forest products and wood science: An introduction, 4th ed. Iowa State Press, Ames, IA. 564 pp.nBucur, V. 1981. Détermination du module d'Young du bois par une méthode dynamique sur carottes de sondage. Ann. Sci. For. 38(2):283-298.nBucur, V. 1983. An ultrasonic method for measuring the elastic constants of wood increment cores bored from living trees. Ultrasonics 21(3):116-126.nBucur, V. 1905. Ultrasonic techniques for nondestructive testing of standing trees. Ultrasonics 43(4):237-239.nBucur, V. 1906. Acoustics of wood, 2nd ed. Springer-Verlag, Berlin, Germany. 400 pp.nEvans, J. W., J. F. Senft, and D. W. Green. 2000. Juvenile wood effect in red alder: Analysis of physical and mechanical data to delineate juvenile and mature wood zones. Forest Prod. J. 50(7-8):75-87.nFalconer, D. S., and T. F. C. Mackay. 1996. Introduction to quantitative genetics. Addison Wesley Longman Limited, Edinburgh, UK. 480 pp.nFujisawa, Y., S. Ohta, K. Nishimura, and M. Tajima. 1992. Wood characteristics and genetic variations in Sugi (Cryptomeria japonica). Clonal differences and correlations between locations of dynamic moduli of elasticity and diameter growths in plus-tree clones. Mokuzai Gakkaishi 38(7):638-644.nFujisawa, Y., S. Ohta, K. Nishimura, and M. Tajima. T. Toda, and M. Tajima. 1994. Wood characteristics and genetic variations in Sugi (Cryptomeria japonica) III. Estimation of variance components of the variation in dynamic modulus of elasticity with plus-tree clones. Mokuzai Gakkaishi 40(5):457-464.nHernández, R. E. 1993. Influence of moisture sorption history on the swelling of sugar maple wood and some tropical hardwoods. Wood Sci. Technol. 27(5):337-345.nHernández, R. E. 2007. Influence of accessory compounds, wood density and interlocked grain on the compressive properties of hardwoods. Wood Sci. Technol. 41(3):249-265.nHernández, R. E., and G. Restrepo. 1995. Natural variation in wood properties of Alnus acuminata H.B.K. grown in Colombia. Wood Fiber Sci. 27(1):41-49.nHernández, R. E., A. Koubaa, M. Beaudoin, and Y. Fortin. 1998. Selected mechanical properties of fast-growing poplar hybrid clones. Wood Fiber Sci. 30(2):138-147.nHerzig, L. 1991. Évaluation du module d'Young de bois d'épinette par méthode ultrasonore sur carottes de sondage. M.Sc. thesis, Département des sciences du bois, Université Laval, Québec, Canada.nHodge, G. R., and W. S. Dvorak. 2004. The CAMCORE international provenance/progeny trials of Gmelina arborea: genetic parameters and potential gain. New For. 28(2-3):147-166.nHodge, G. R., and W. S. Dvorak. H. Urueña, and L. Rosales. 2002. Growth, provenance effects and genetic variation of Bombacopsis quinata in field tests in Venezuela and Colombia. For. Ecol. Manage. 158(1-3):273-289.nIlic, J. 2001. Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker. Holz Roh-Werkst. 59(3):169-175.nIlic, J. 2003. Dynamic Moe of 55 species using small wood beams. Holz Roh-Werkst. 61(3):167-172.nJozsa, L. A., and G. R. Middleton. 1994. A discussion of wood quality attributes and their practical implications. Special Publication No. SP-34. Forintek Canada Corporation. Western Laboratory, Vancouver, BC, Canada.nKeenan, F. J., and M. Tejada. 1984. Tropical timber for building materials in the Andean Group countries of South America. International Development Research Centre, Ottawa, Canada.nKyokong, B., and E. D. Bello. 1977. Relationship of dynamic modulus of elasticity with static modulus of elasticity and modulus of rupture of Dipterocarpus grandiflorus and Shorea polysperma.Pterocarpus 3(1):43-54.nLei, H., B. L. Gartner, and M. R. Milota. 1997. Effect of growth rate on the anatomy, specific gravity, and bending properties of wood from 7-year-old red alder (Alnus rubra). Can. J. For. Res. 27(1):80-85.nLinares, C., E. Meneses, and J. Diaz. 1992. Monografía sobre capirona: Calycophyllum spruceanum. Proyecto Forestal ITTO PD 37/88: Utilización industrial de nuevas especies forestales en el Perü. Camara Nacional Forestal, Dirección General de Forestal y Fauna, Lima, Peru.nNakada, R., Y. Fujisawa, and Y. Hirakawa. 2003. Effects of clonal selection by microfibril angle on the genetic improvement of stiffness in Cryptomeria japonica D. Don. Holzforschung 57(5):553-560.nNamkoong, G., H. C. Kang, and J. S. Brouard. 1988. Tree breeding: Principles and strategies. Monographs on Theoretical and Applied Genetics. Springer-Verlag, New York, NY. 180 pp.nOliveira, F.G.R., J.A.O. Campos, and A. Sales. 2002. Ultrasonic measurements in Brazilian hardwood. Materials Research 5(1):51-55.nPanshin, A. J., and C. de Zeeuw. 1980. Textbook of wood technology, 4th ed. McGraw-Hill, New York, NY. 736 pp.nRivero, J. G. M. 2004. Propiedades físico-mecánicas de Gmelina arborea Roxb. y Tectona grandis Linn. F. proveniente de plantaciones experimentales del Valle del Sacta—Cochabamba, Bolivia.'>, P. E. T., I. O. Geraldi, and J. N. Garcia. 2003. Estimates of genetic parameters for physical and mechanical properties of wood in Eucalyptus grandis.Scientia Forestalis 63:54-64.nSaranpää, P. 2003. Wood density and growth. Pages 87-117 in J. R. Barnett and G. Jeronimidis, eds. Wood quality and its biological basis. Blackwell Publishing Ltd., Oxford, UK.nSAS Institute INC. 2002-2003. SAS/STAT users' guide, version 9.1. SAS Institute Inc., Cary, NC.nSears, R. R. 2003. New forestry on the floodplain: The ecology and management of Calycophyllum spruceanum (Rubiaceae) on the Amazon landscape. Ph.D. thesis, Graduate School of Arts and Sciences, Columbia University, Ithaca, NY. 246 pp.nSimons, A. J., D. J. Macqueen, and J. L. Stewart. 1994. Strategic concepts in the domestication of non-industrial trees. Pages 91-102 in R. B. Leakey and A. C. Newton, eds. Tropical trees: The potential for domestication and the rebuilding of forest resources. HMSO Books, London, UK.nSkaar, C. 1988. Wood-water relations. Springer-Verlag, New York, NY. 283 pp.nSotelo Montes, C., and J. C. Weber. 1997. Priorización de especies arbóreas para sistemas agroforestales en la selva baja del Perü. Agroforestería en las Américas 4(14): 12-17.nSotelo Montes, R. E. Hernández, J. Beaulieu, and J. C. Weber. 2006. Genetic variation and correlations between growth and wood density of Calycophyllum spruceanum at an early age in the Peruvian Amazon. Silvae Genet. 55(4-5):217-228.nSteel, R. G. D., J. H. Torrie, and D. A. Dickey. 1997. Principles and procedures of statistics—A biometrical approach, 3rd ed. McGraw-Hill Series in Probability and Statistics. McGraw-Hill, Boston, MA. 672 pp.nToledo, E., and C. Rincón. 1996. Utilización industrial de nuevas especies forestales en el Perú. Cámara Nacional Forestal, Instituto Nacional de Recursos Naturales, Organización Internacional de las Maderas Tropicales, Lima, Peru.nTsoumis, G. T. 1991. Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold, New York, NY. 400 pp.nWeber, J. C., and C. Sotelo Montes. 2005. Variation and correlations among stem growth and wood traits of Calycophyllum spruceanum Benth. from the Peruvian Amazon. Silvae Genet. 54(1):31-41.nWeber, J. C., C. Sotelo Montes. H. Vidaurre, I. K. Dawson, and A. J. Simons. 2001. Participatory domestication of agroforestry trees: an example from the Peruvian Amazon. Development in Practice 11(4):425-433.nYang, J-L, and Y. Fortin. 2001. Evaluating strength properties of Pinus radiata from ultrasonic measurements on increment cores. Holzforschung 55(6):606-610.nZhang, S. Y. 1995. Effect of growth rate on wood specific gravity and selected mechanical properties in individual species from distinct wood categories. Wood Sci. Technol. 29(6):451-465.nZobel, B. J., and J. R. Sprague. 1998. Juvenile wood in forest trees. Springer Series in Wood Science. Springer-Verlag, Berlin, Germany. 300 pp.n






Research Contributions