Characterization of Heat and Mass Transfer in the Mat during the Hot Pressing of MDF Panels

Authors

  • Rosilei A. Garcia
  • Alain Cloutier

Keywords:

Medium density fiberboard, heat and mass transfer, gas permeability, hot pressing

Abstract

The two objectives of this project were to determine gas permeability of the mat as a function of density, and to characterize panel properties and temperature and gas pressure evolution in the mat during hot pressing as a function of press closing strategy, panel density, and mat moisture content. Panels of 560 X 460 X 16 mm were made in a 600- X 600-mm laboratory press. The manufacturing parameters were the following: press closing strategy of 145, 155, and 165% of the target panel thickness after 30 s of pressing; initial mat moisture content of 10, 12, and 14%; and panel density of 650, 725, and 800 kg m-3. Temperature and gas pressure were measured at the surface and core of the mat. The gas permeability of the panel was measured for panels of uniform densities of 400, 650, 900, and 1150 kg m-3. Gas permeability decreased by a factor of 1000 when panel density increased from 400 to 1150 kg m-3. The flexural properties increased with an increase in mat moisture content and panel density, and a decrease in press closing strategy. The internal bond increased with an increase in mat moisture content and panel density. Thickness swell decreased with an increase of panel density, and increased with an increase in press closing strategy. The time required to reach 100°C in the mat core decreased with a decrease in press closing strategy. The maximum gas pressure in the mat core was proportional to panel density. It also increased with mat moisture content for a press closing strategy of 165% and a panel density of 800 kg m-3.

References

American National Standards Institute (ANSI). 1994. Medium Density Fiberboard. National Particleboard Association. ANSI A208.2-1994. Gaithersburg, MO.nAmerican Society for Testing and Materials (ASTM). 1996. Standard Test Methods for Evaluating Properties of Wood-Base and Particle Panel Materials. ASTM D1037-96a. Philadelphia, PA.nBolton, A. J., and P. E. Humphrey. 1989. The hot pressing of dry-formed wood-based composites. Part III: Predict vapour pressure and temperature variation with time, compared with experimental data for laboratory boards. Holzforschung 43:265-274.nBolton, A. J., and P. E. Humphrey. 1994. The permeability of woodbased composite materials. Holzforschung 48: 95-100.)nBowen, M. E. 1970. Heat transfer in particleboard during pressing. Ph.D. Thesis. Colorado State, USA. (In A. J. Bolton, and P. E. Humphrey. 1994. The permeability of wood-based composite materials. Holzforschung 48: 95-100.)nDai, C., and P. R. Steiner. 1993. Compression behavior of randomly formed wood flake mats. Wood Fiber Sci. 25 (4):349-358.nDenisov, O. B., P. P. Anisov, and P. E. Zuban. 1975. Untersuchung der permeabilität von spanvliesen. Holztechnologie 16(1):10-14. (In A. J. Bolton, and P. E. Humphrey. 1994. The permeability of wood-based composite materials. Holzforschung 48:95-100.)nGeimer, R. L. 1982. Dimensional stability of flakeboards as affected by board specific gravity and flake alignment. Forest Prod. J. 32(8):44-52.nGeimer, R. L., and J. H. Kwon. 1999. Flakeboard thickness swelling. Part II. Fundamental response of board properties to steam injection pressing. Wood Fiber Sci. 31(1): 15-27.nGreubel, D., and M. Paulitsch. 1977. Investigations on dimensional changes in the plane of particleboard. III. Effect of raw material composition and processing variables on the dimensional changes in phenolic-resin bonded particleboard. Holz Roh-Werkst. 31(11):413-420. (In B. R. Vital, J. B. Wilson, and P. H. Kanarek. 1980. Parameters affecting dimensional stability of flakeboard and particleboard. Forest Prod. J. 30(12):23-29.)nHarless, T. E. G., F. G. Wagner, P. H. Short, R. D. Seale, P. H. Mitchell, and D. S. Ladd. 1987. A model to predict the density profile of particleboard. Wood Fiber Sci. 19(1):81-92.nHata, T., S. Kawai, T. Ebihara, and H. Sasaki. 1993. Production of particleboards with a steam-injection. Press V. Effects of particle geometry on temperature behaviors in particle mats and on air permeabilities of boards. Mokuzai Gakkaishi 39(2):161-168.nHse, G.-Y. 1975. Properties of flakeboards from hardwoods growing on southern pine sites. Forest Prod. J. 25(3): 48-53.nHsu, W. E. 1994. A brief review of dry-process fiberboard manufacturing. Forintek Canada Corp. 11 pp.nHumphrey, P. E., and A. J. Bolton. 1989a. The hot pressing of dry-formed wood-based composites. Part II: A simulation model for heat and moisture transfer, and typical results. Holzforschung 43:199-206.nHumphrey, P. E., and A. J. Bolton. 1989b. The hot pressing of dryformed wood-based composites. Part V: The effect of board size: Comparability of laboratory and industrial pressing. Holzforschung 43:401-405.nJohnson, S. E., and F. A. Kamke. 1994. Characteristics of phenol-formaldehyde adhesive bonds in steam injection pressed flakeboard. Wood Fiber Sci. 26(2):259-269.nKamke, F. A., and L. J. Casey. 1988a. Fundamentals of flakeboard manufacture: Internal-mat conditions. Forest Prod. J. 38(6):38-44.nKamke, F. A., and L. J. Casey. 1988b. Gas pressure and temperature in the mat during flakeboard manufacture. Forest Prod. J. 38 (3):41-43.nKamke, F. A., and S. C. Zylkowski. 1989. Effects of woodbased panel characteristics on thermal conductivity. Forest Prod. J. 39(5):19-24.nLehmann, W. F. 1972. Moisture stability relationship in wood-base composition boards. J. Forest Prod. J. 22 (7): 53-59. (In A. J. Bolton, and P. E. Humphrey. 1994. The permeability of wood-based composite materials. Holzforschung 48:95-100).nLihra, T., A. Cloutier, and S. Zhang. 2000. Longitudinal and transverse permeability of balsam fir wetwood and normal heartwood. Wood Fiber Sci. 32(2):164-178.nMoslemi, A. A. 1974. Particleboard. Volume 2: Technology. Southern Illinois University Press, Carbondale and Edwardville, IL. 245 pp.nPark, B. D., B. Riedl, E. W. Hsu, and J. Shields. 1999. Hot-pressing process optimization by response surface methodology. Composite and manufactured products. Forest Prod. J. 49(5):62-68.nPerré, P., and E. Agoua. 2001. Propriétés de transfert massique dans les panneaux de MDF: Identification de paramètres morphologiques à partir de mesures de perméabilité et de diffusivité. Les Cahiers Scientifiques du Bois 2:105-117 (in French).nSiau, J. F. 1995. Wood: Influence of moisture on physical properties. Virginia Polytechnic Institute and State University Press, Blacksburg, VA. 227 pp.nSmith, D. C. 1982. Waferboard press closing strategies. Forest Prod. J. 32(3):40-45.nSokunbi, O. K. 1978. Aspects of particleboard permeability. M. Sc. Thesis. University of Wales, U. K. (In P. E. Humphrey, and A. J. Bolton. 1989a. The hot pressing of dry-formed wood-based composites. Part II: A simulation model for heat and moisture transfer, and typical results. Holzforschung 43:199-206)nSosnin, M. J. 1974. Untersuchung der elastizitat und verformbarkeit der spanvliese bei der spanplattenpressung. Holztechnologie 15 (1):45-48. (In F. A. Kamke, and L. J. Casey. 1988a. Fundamentals of flakeboard manufacture: Internal-mat conditions. Forest Prod. J. 38(6):38-44.)nVital, B. R., J. B. Wilson, and P. H. Kanarek. 1980. Parameters affecting dimensional stability of flakeboard and particleboard. Forest Prod. J. 30(12):23-29.nWang, S., and P. M. Winistorfer. 2000. Fundamentals of vertical density profile formation in wood composites. Part II. Methodology of vertical density formation under dynamic conditions. Wood Fiber Sci. 32(2):220-238.nWinistorfer, P. M., W. W. Moschler, G. S. Wang, and E. DePaula. 2000. Fundamentals of vertical density profile formation in wood composites. Part I. In-situ density measurement of the consolidation process. Wood Fiber Sci. 32(2):209-219.nWolcott, M. P., F. A. Kamke, and D. A. Dillard. 1990. Fundamentals of flakeboard manufacture: Viscoelastic behavior of the wood component. Wood Fiber Sci. 22 (4):345-361.nXu, W., and O. Suchsland. 1998. Modulus of elasticity of wood composite panels with a uniform vertical density profile: A model. Wood Fiber Sci. 30(3):293-300.nZuban, P. 1969. Effect of mat density and particle dimensions on the gas permeability of a chip mat. (In Russe). Lesoinzhenernoe delo i mekhanicheskaya tekhnologiya drevesiny. pp. 200-203. (In A. J. Bolton, and P. E. Humphrey. 1994. The permeability of wood-based composite materials. Holzforschung 48:95-100).n

Downloads

Published

2007-06-05

Issue

Section

Research Contributions