A Numerical Analysis Technique to Evaluate the Moisture-Dependent Diffusion Coefficient on Moisture Movement During Drying


  • Yong Chen
  • Elvin T. Choong
  • David M. Wetzel


Numerical analysis, diffusion coefficient, drying, fiber saturation point


The conventional method of determining the diffusion coefficient of wood as a function of moisture content is based largely on the moisture content profile data using a slicing technique. This method is destructive and subject to inherent error because it uses average moisture content values and different samples at various drying times. This paper describes an alternative nondestructive approach using a numerical technique to evaluate the moisture-dependent diffusion coefficient using drying curves. It gives an accurate prediction of moisture movement through the entire drying process.


Barkas, W. W. 1949. The swelling of wood under stress. Dep. Sci. Ind. Res. For. Res. Spec. Report No. 6. London, UK.nBui, X., E. T. Choong, and W. G. Rudd. 1980. Numerical methods for solving the equation for diffusion through wood during drying. Wood Sci. 13(2):117-121.nCarslaw, H. S., and J. C. Jaeger. 1986. Conduction of heat in solids, 2nd ed. Clarendon Press, Oxford, UK.nChen, Y. 1994. Application of optimum solutions of diffusion model to evaluate the effect of extractives in wood drying. Ph.D dissertation, Louisiana State Univ., Baton Rouge, LA.nChen, Y., E. T. Choong, and H. M. Barnes. 1995a. Effect of selected water-soluble bulking chemicals on moisture diffusion and dimensional stability of wood. Forest Prod. J. 45(5):84-90.nChen, Y., E. T. Choong, and D. M. Wetzel. 1995b. Evaluation of diffusion coefficient and surface emission coefficient by an optimization technique. Wood Fiber Sci. 27(2): 178-182.nChoong, E. T. 1965. Diffusion coefficients of softwoods by steady-state and theoretical methods. Forest Prod. J. 15(11):21-27.nChoong, E. T., and C. Skaar. 1969. Separating internal and external resistance to moisture removal in wood drying. Wood Sci. 1(4):200-203.nChoong, E. T., and C. Skaar. 1972. Diffusivity and surface emissivity in wood drying. Wood Fiber 4(2):80-86.nCrank, J. 1975. The mathematics of diffusion, 2nd ed. Clarendon Press, Oxford, UK.nHart, C. A. 1964. Principles of moisture movement in wood. Forest Prod. J. 14(5):207-214.nLapidus, L., and G. F. Pinder. 1982. Numerical solution of partial differential equations in science and engineering. John Wiley & Sons, New York, NY.nLiu, J. Y. 1989. A new method for separating diffusion coefficient and surface emission coefficient. Wood Fiber Sci. 32(2):133-141.nMoschler, W. W., Jr., and R. E. Martin. 1968. Diffusion equation solutions in experimental wood drying. Wood Sci. 1(1):47-57.nPike, R. W. 1986. Optimization for engineering systems. Van Nostrand Reinhold, New York, NY.nRosen, H. N. 1976. Exponential dependency of the moisture diffusion coefficient on moisture content. Wood Sci. 8(3):174-179.nRosen, H. N. 1978. The influence of external resistance on moisture adsorption rates in wood. Wood Fiber 10(3):218-228.nSkaar, C. 1954. Analysis of methods for determining the coefficient of moisture diffusion in wood. Forest Prod. J. 4(6):403-410.nStamm, A. J. 1964. Wood and cellulose science. Ronald Press, New York, NY.nStevens, R. R., J. R. Slay, and H. M. Barnes. 1985. Numerical analysis technique determines the relationship between the diffusion coefficient and moisture content of wood. In P. Mitchell, ed. Proc. North American Wood Drying Symposium. Nov. 27-28, 1984. Mississippi State Univ., Mississippi State, MS.nU.S. Department of Agriculture. 1987. Wood hand-book: Wood as an engineering material. FPL, Forest Serv., Agric. Handb. No. 72, U.S. Govt. Print. Off., Washington, DC.n






Research Contributions