Modeling Hygroelastic Properties of Genetically Modified Aspen

Authors

  • Laszlo Horvath
  • Perry Peralta
  • Ilona Peszlen
  • Levente Csoka
  • Balazs Horvath
  • Joseph Jakes

Keywords:

Cell wall, computer modeling, hydrophilicity, lignin, transgenic aspen

Abstract

Numerical and three-dimensional finite element models were developed to improve understanding of major factors affecting hygroelastic wood properties. Effects of chemical composition, microfibril angle, crystallinity, structure of microfibrils, moisture content, and hydrophilicity of the cell wall were included in the model. Wood from wild-type and decreased-lignin transgenic aspen (Populus tremuloides Michx.) was used for experimental validation of the computer model. The model was able to predict longitudinal elastic modulus of microfibrils and woody cell walls. The difference in longitudinal elastic properties between wild-type and genetically modified aspen wood was predicted well only when additional softening of hemicelluloses and amorphous cellulose of transgenic aspen was included in the model.

References

Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer (Guildf) 42(3):963-969.nAstley R, Harrington J, Stol K (1997) Mechanical modelling of wood microstructure, an engineering approach. Institution of Professional Engineers New Zealand Transactions 24(1):9.nAstley R, Stol K, Harrington J (1998) Modeling the elastic properties of softwood. Eur J Wood Wood Prod 56(1): 43-50.nBergander A, Salmén L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci 37(1):151-156.nBodig J, Jayne B (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold, New York, NY. 736 pp.nBurgert I, Frühmann K, Keckes J, Fratzl P, Stanzl-Tschegg S (2003) Microtensile testing of wood fibers combined with video extensometry for efficient strain detection. Holzforschung 57(6):661-664.nBurgert I, Gierlinger N, Zimmermann T (2005) Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 1: Structural and chemical characterisation. Holzforschung 59(2):240-246.nCave I (1969) The longitudinal Young's modulus of Pinus radiata. Wood Sci Technol 3(1):40-48.nCave I (1978) Modelling moisture-related mechanical properties of wood Part II: Computation of properties of a model of wood and comparison with experimental data. Wood Sci Technol 12(2):127-139.nCave I, Walker J (1994) Stiffness of wood in fast-grown plantation softwoods: The influence of microfibril angle. Forest Prod J 44(5):43-48.nChou P, Carleone J, Hsu C (1972) Elastic constants of layered media. J Composite Mater 6(1):80-93.nChristensen R, Waals F (1972) Effective stiffness of randomly oriented fibre composites. J Composite Mater 6(3):518-535.nCousins W (1978) Young's modulus of hemicellulose as related to moisture content. Wood Sci Technol 12(3):161-167.nEasterling K, Harrysson R, Gibson L, Ashby M (1982) On the mechanics of balsa and other woods. Proc Royal Soc London. Series A, Mathematical and Physical Sci 383 (1784):31-41.nEichhorn S, Young R (2001) The Young's modulus of a microcrystalline cellulose. Cellulose 8(3):197-207.nFPL (1999) Wood handbook: Wood as an engineering material. Gen Tech Rep FPL-GTR-113 USDA For Serv Forest Prod Lab, Madison, WI. 463 pp.nGibson L, Ashby M (1999) Cellular solids: Structure and properties. Cambridge University Press, New York, NY. 510 pp.nGillis P (1972) Orthotropic elastic constants of wood. Wood Sci Technol 6(2):138-156.nGindl W, Gupta H, Schöberl T, Lichtenegger H, Fratzl P (2004) Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys A-Mater 79(8):2069-2073.nGuhados G, Wan W, Hutter J (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14): 6642-6646.nHalpin J, Kardos J (1976) The Halpin-Tsai equations: A review. Polym Eng Sci 16(5):344-352.nHansen N, Plackett D (2008) Sustainable films and coatings from hemicelluloses: A review. Biomacromolecules 9(6):1493-1505.nHarrington J, Astley R, Booker R (1998) Modelling the elastic properties of softwood. Eur J Wood Wood Prod 56(1):37-41.nHofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A, Solids 24(6):1030-1053.nHofstetter K, Hellmich C, Eberhardsteiner J (2007) Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach. Holzforschung 61 (4):343-351.nHorvath B (2009) Effect of lignin content and structure on the anatomical, physical and mechanical properties of genetically engineered aspen trees. PhD dissertation, North Carolina State University, Raleigh, NC. 193 pp.nHorvath L (2010) Modeling the mechanical behavior of transgenic aspen with altered lignin content and composition. PhD dissertation, North Carolina State University, Raleigh, NC. 315 pp.nHorvath B, Peszlen I, Peralta P, Horvath L, Kasal B, Li L (2010a) Elastic modulus determination of transgenic aspen using a dynamic mechanical analyzer in static bending mode. Forest Prod J 60(3):296-300.nHorvath L, Peszlen I, Peralta P, Kasal B, Li L (2010b) Mechanical properties of genetically engineered young aspen with modified lignin content and/or structure. Wood Fiber Sci 42(3):310-317.nHsieh Y, Yano H, Nogi M, Eichhorn S (2008) An estimation of the Young's modulus of bacterial cellulose filaments. Cellulose 15(4):507-513.nJakes J, Frihart C, Beecher J, Moon R, Resto P, Melgarejo Z, Suárez O, Baumgart H, Elmustafa A, Stone D (2009) Nanoindentation near the edge. J Mater Res 24 (3):1016-1031.nJakes J, Frihart C, Beecher J, Moon R, Stone D (2008) Experimental method to account for structural compliance in nanoindentation measurements. J Mater Res 23 (4):1113-1127.nJones R (1999) Mechanics of composite materials. Taylor and Francis, Philadelphia, PA. 538 pp.nKahle E, Woodhouse J (1994) The influence of cell geometry on the elasticity of softwood. J Mater Sci 29(5): 1250-1259.nKasal B, Peszlen I, Peralta P, Li L (2007) Preliminary tests to evaluate the mechanical properties of young trees with small diameter. Holzforschung 61(4):390-393.nKatz J, Spencer P, Wang Y, Misra A, Marangos O, Friis L (2008) On the anisotropic elastic properties of woods. J Mater Sci 43(1):139-145.nKöhler L, Spatz H (2002) Micromechanics of plant tissues beyond the linear-elastic range. Planta 215(1): 33-40.nKojima Y, Yamamoto H (2004) Properties of the cell wall constituents in relation to the longitudinal elasticity of wood. Wood Sci Technol 37(5):427-434.nKoponen S, Toratti T, Kanerva P (1989) Modelling longitudinal elastic and shrinkage properties of wood. Wood Sci Technol 23(1):55-63.nKoponen S, Toratti T, Kanerva P (1991) Modelling elastic and shrinkage properties of wood based on cell structure. Wood Sci Technol 25(1):25-32.nLi L, Zhou Y, Cheng X, Sun J, Marita J, Ralph J, Chiang V (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 100(8):4939-4944.nMark R (1967) Cell wall mechanics of tracheids. Yale University Press, New Haven, CT. 310 pp.nMishnaevsky L Jr, Qing H (2008) Micromechanical modelling of mechanical behaviour and strength of wood: State-of-the-art review. Comput Mater Sci 44(2):363-370.nNeagu R, Gamstedt E (2007) Modelling of effects of ultrastructural morphology on the hygroelastic properties of wood fibres. J Mater Sci 42(24):10254-10274.nNishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Pol Phys 33(11):1647-1651.nOrso S, Wegst U, Arzt E (2006) The elastic modulus of spruce wood cell wall material measured by an in situ bending technique. J Mater Sci 41(16):5122-5126.nPanshin A, De Zeeuw C, Brown H (1970) Textbook of wood technology. McGraw-Hill, New York, NY. 736 pp.nQing H, Mishnaevsky L (2009a) Moisture-related mechanical properties of softwood: 3D micromechanical modeling. Comput Mater Sci 46(2):310-320.nQing H, Mishnaevsky L Jr (2009b) 3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers. Mech Mater 41(9):1034-1049.nRowell R, Banks W (1985) Water repellency and dimensional stability of wood. Gen. Tech. Rep. FPL-GTR-50 USDA For Serv Forest Prod Lab, Madison, WI. 24 pp.nRusli R, Eichhorn S (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93(3):1-3 (Article Number 033111).nSalmen L (2004) Micromechanical understanding of the cell-wall structure. C R Biol 327(9-10):873-880.nSalmén L, Burgert I (2008) Cell wall features with regard to mechanical performance. A review COST Action E35 2004-2008: Wood machining: Micromechanics and fracture. Holzforschung 63(2):121-129.nSalmen L, Deruvo A (1985) A model for the prediction of fiber elasticity. Wood Fiber Sci 17(3):336-350.nSedighi-Gilani M, Navi P (2007) Experimental observations and micromechanical modeling of successive-damaging phenomenon in wood cells' tensile behavior. Wood Sci Technol 41(1):69-85.nYamamoto H, Kojima Y (2002) Properties of cell wall constituents in relation to longitudinal elasticity of wood. Wood Sci Technol 36(1):55-74.n

Downloads

Published

2012-01-13

Issue

Section

Research Contributions