A Model for the Prediction of Fiber Elasticity

Authors

  • Lennart Salmén
  • Alf de Ruvo

Keywords:

Cell walls, cellulose, cellulose fibers, elastic strength, hemicelluloses, lignins, models

Abstract

A model is presented that enables the elastic properties of wood fibers to be estimated from the properties of its polymeric constituents, cellulose, hemicellulose, and lignin. The influence of the value of the axial stiffness of the cellulose crystal is demonstrated, its proper value being discussed in comparison with experimental data on fibers. The effects on fiber stiffness of the S2 fibril angle, the fibril angles of other layers, the crystallinity, and layer thicknesses are analyzed. The manner in which the effect of a variation in yield can be simulated by a change in shape factor of the reinforcing cellulose crystals is demonstrated, the cell wall thus being considered to be a discontinuous reinforced composite.

References

Agarwal, B. D., and L. J. Broutman. 1980. Analysis and performance of fiber composites. John Wiley & Sons, New York.nBalashov, V., R. D. Preston, G. W. Ripley, and L. C. Spark. 1957. Structure and mechanical properties of vegetable fibres I. The influence of strain on the orientation of cellulose microfibrils in sisal leaf fibre. Proc. Roy. Soc. (London) B146:460-468.nCave, I. D. 1968. Anisotropic elasticity of the plant cell wall. Wood Sci. Technol.2:268-278.nCave, I. D. 1978. Modelling moisture-related mechanical properties of wood. Part I: Properties of the wood constituents. Wood Sci. Technol.12:75-86.nCousins, W. J. 1976. Elastic modulus of lignin as related to moisture content. Wood Sci. Technol.10:9-17.nCousins, W. J. 1978. Young's modulus of hemicellulose as related to moisture content. Wood Sci. Technol.12:161-167.nCowdrey, D. R., and R. D. Preston. 1965. The mechanical properties of plant cell walls: Helical structure and Young's modulus of air-dried xylem in Picea sitchensis. Pages 473-492 in W. A. Côté, Jr., ed. Cellular ultrastructure of woody plants. Syracuse University Press, Syracuse, N.Y.nEhrnrooth, E. M. 1982. Softening and mechanical behaviour of single wood pulp fibres—the influence of matrix composition and chemical and physical characteristics. Doctor's dissertation, University of Helsinki, Helsinki.nEriksson, Ö., D. A. I. Goring, and B. O. Lindgren. 1980. Structural studies on the chemical bonds between lignins and carbohydrates in spruce wood. Wood Sci. Technol.14:267-279.nFellers, C., A. de Ruvo, J. Elfström, and M. Htun. 1980. Edgewise compression properties. A comparison of handsheets made from pulp of various yields. Tappi63(6):109-112.nFushitani, M. 1973. Study of molecular orientation in wood by fluorescence method. J. Japan Wood Res. Soc.19:135-140.nGillis, P. P. 1969. Effect of hydrogen bonds on the axial stiffness of crystalline native cellulose. J. Polym. Sci.A2(7):783-794.nHalpin, J. C., and J. L. Kardos. 1976. The Halpin-Tsai equations: A review. Polym. Eng. Sci.16(5):344-352.nHearle, J. W. S. 1963. The fine structure of fibers and crystalline polymers III. Interpretation of mechanical properties of fibers. J. Appl. Polym. Sci.7:1207-1223.nJaswon, M. A., P. P. Gillis, and R. E. Mark. 1968. The elastic constants of crystalline native cellulose. Proc. Roy. Soc.A306:389-412.nJones, R. M. 1975. Mechanics of composite materials. McGraw-Hill, New York.nKeegstra, K., K. W. Talmadge, W. D. Bauer, and P. Albersheim. 1973. The structure of plant cell walls, III: A model of the walls of suspension cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol.51:188-196.nKerr, A. J., and D. A. I. Goring. 1975. The ultrastructural arrangement of the wood cell wall. Cellul. Chem. Technol.9:563-573.nKrässig, H. 1979. Neuere Structurasichten auf dem Gebeit der Cellulose. Papier (Darmstadt) 33(10A):V9-V20.nLiang, C. Y., K. H. Bassett, E. A. McGinnes, and R. H. Marchessault. 1960. Infra-red spectra of crystalline polysaccharides. VII. Thin wood sections. Tappi43(12):1017-1024.nLock, G. W. 1962. Sisal. Tanganyika Sisal Growers' Association, London.nMarchessault, R. E., and J. A. Howsmon. 1957. Experimental evaluation of the lateral-order distribution in cellulose. Textile Res. J.27:30-41.nMark, R. E. 1967. Cell wall mechanics of tracheids. Yale University Press, New Haven.nMark, R. E. 1972. Mechanical behaviour of the molecular components of fibers. Pages 49-82 in B. A. Jayne, ed. Theory and design of wood and fiber composite materials. Syracuse University Press, Syracuse.nMark, R. E., and P. P. Gillis. 1973. The relationship between fiber modulus and S2 angle. Tappi56(4):164-167.nMuench, E. 1938. Statik und Dynamik des schraubigen Baues der Zellwand, besonders des Druck—und Zugholzes. Flora (Jena) N.F.32(4):357-424.nPage, D. H. 1983. The origin of the differences between sulphite and kraft pulps. J. Pulp Pap. Sci.9(1):TR15-TR20.nPage, D. H., El-Hosseiny, F., K. Winkler and A. P. S. Lancaster. 1977. Elastic modulus of single wood pulp fibers. Tappi60(4):114-117.nPreston, R. D. 1960. Anisotrophy in the microscopic and submicroscopic structure of wood. Proc. Fifth World Forestry Congr. 2, Univ. of Washington, Seattle, 1298-1307.nSakurada, I., Y. Nukushina, and T. Ito. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci.57:651-660.nSchniewind, A. P. 1966. Ueber Unterschiede in der Zugfestigkeit von Frueh- und Spaetholztrach- eiden. Holz Roh- Werkst.24(10):502-506.nSchniewind, A. P. 1972. Elastic behaviour of the wood fiber. Pages 83-95 in B. A. Jayne, ed. Theory and design of wood and fiber composite materials. Syracuse University Press, Syracuse.nTreloar, L. R. G. 1960. Calculations of elastic moduli of polymer crystals: III Cellulose. Polymer, 1(3):290-303.nTsai, S. W., and H. T. Hahn. 1980. Introduction to composite materials. Technomic, Westpoint, Conn.nWilson, P. I. 1971. Sisal, Vol. 2. F.A.O., U.N.O. Rome Hard Fibers Research Series, No. 8, April 30.n

Downloads

Published

2007-06-27

Issue

Section

Research Contributions