Strain Measurement in Wood using A Digital Image Correlation Technique
Keywords:
Strain measurement, image analysis, mechanical testingAbstract
The suitability of the Digital Image Correlation Technique (DICT) for full-size test specimens of wood and wood-based composites was evaluated in this study. The technique utilizes pairs of digitized video images of undeformed and deformed test specimens and an image correlation computer routine to measure the displacements of any or all points on the surface of the test specimen. New methods for image acquisition and image correlation were developed and evaluated in this study.
Evaluation and calibration were performed using an aluminum alloy block for comparison and axial compression of small, clear specimens of wood and in accordance with ASTM D143-83 (1986a). Comparison of strain measurements obtained using an independent measurement technique and strain obtained with the DICT showed close agreement. Utilizing DICT for full-field strain distributions through an increasing load series revealed progressive failure development in the wood specimens, the eventual failure mode, and a shift in strain concentrations during load application.
References
ASTM. 1986a. Standard methods of testing small clear specimens of timber. Standard D143-83. American Society for Testing and Materials, Philadelphia, PA.nASTM. 1986b. Ovendry method. Standard D2016-83, Method A. American Society for Testing and Materials, Philadelphia, PA.nChoi, D. 1990. Failure initiation and propagation in wood in relation to its structure. Ph.D. dissertation, State University of New York, Syracuse, NY.nChoi, D., J. L. Thorpe, and R. B. Hanna. 1991. Image analysis to measure strain in wood and paper. Wood Sci. Technol. 25:251-262.nChu, T. C. 1982. Digital image correlation method in experimental mechanics. Ph.D. dissertation, University of South Carolina, Columbia, SC.nHe, Z. H., M. A. Sutton, W. R. Ranson, and W. H. Peters. 1984. Two-dimensional fluid-velocity measurements by use of digital speckle correlation techniques. Exp. Mech. 24(2): 117-121.nHolman, J. P. 1984. Experimental methods for engineers. 4th ed. McGraw-Hill Book Co., New York, NY.nLukasiewicz, S. A., M. Stanuszek, and J. A. Czyz. 1993. Filtering of the experimental data in plane stress and strain fields. Exp. Mech. 33(2): 139-147.nLuo, P. F., Y. J. Chao, and M. A. Sutton. 1994. Experimental evaluation of J-integral using both in-plane deformations and caustics obtained from out-of-plane displacements. Pages 248-253 in Proc. 1994 SEM Spring Conference on Experimental Mechanics, June 1994, Baltimore, MD.nPeters, W. H., and W. F. Ranson. 1982. Digital imaging techniques in experimental stress analysis. Optical Eng. 21(3):427-431.nRanson, W. F., D. M. Waler, and J. B. Caulfield. 1986. Biomechanics in Computer vision in engineering mechanics, a discussion paper for the NSF Workshop on Solid Mechanics Related to Paper, August, 1986, Blue Mountain Lake, New York.nSutton, M. A., W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill. 1983. Determination of displacements using an improved digital correlation method. Image Vision Comput. 1(3): 133-139.nSutton, M. A., T. L. Chae, J. L. Turner, and H. A. Bruck. 1990. Development of a computer vision methodology for the analysis of surface deformations in magnified images. ASTM STP 1094, MiCon 90, 109-132. American Society for Testing and Materials, Philadelphia, PA.nSutton, M. A., J. L. Turner, H. A. Bruck, and T. A. Chae. 1991. Full-field representation of discretely sampled surface deformation for displacement and strain analysis. Exp. Mech. 31(2):168-177.nVendroux, G. 1994. Scanning tunneling microscopy in micromechanics investigations. Ph.D. thesis, California Institute of Technology, Pasadena, CA.nZink, A. G. 1992. The influence of overlap length on the stress distribution and strength of a bonded wood double lap joint. Ph.D. dissertation, SUNY-CESF, Syracuse, NY.n
Downloads
Published
Issue
Section
License
The copyright of an article published in Wood and Fiber Science is transferred to the Society of Wood Science and Technology (for U. S. Government employees: to the extent transferable), effective if and when the article is accepted for publication. This transfer grants the Society of Wood Science and Technology permission to republish all or any part of the article in any form, e.g., reprints for sale, microfiche, proceedings, etc. However, the authors reserve the following as set forth in the Copyright Law:
1. All proprietary rights other than copyright, such as patent rights.
2. The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In the case of whole articles, such third parties must obtain Society of Wood Science and Technology written permission as well. However, the Society may grant rights with respect to Journal issues as a whole.
3. The right to use all or part of this article in future works of their own, such as lectures, press releases, reviews, text books, or reprint books.