Variation in The Cell-Wall Density of Wood

Authors

  • Robert M. Kellogg
  • Frederick F. Wangaard

Abstract

The density of wood substance determined pycnometrically in water for 18 species was found to range from 1.508 to 1.542 g/cc. After correction for perturbation or compression of the sorbed water, wood-substance density values ranged from 1.497 to 1.517 g/cc for hardwoods and from 1.517 to 1.529 g/cc for the softwoods studied. Specific volume of wood substance ranged from 0.654 to 0.668 cc/g.

Specific volume of the dry cell walls was determined pycnometrically in toluene, using 1-mm sections and wood meal. Values obtained with wood meal were more reliable because of incomplete cell cavity penetration in 1-mm sections and ranged from 0.668 to 0.698 cc/g. Optically estimated values of specific volume based on microtome sections were usually considerably higher as a consequence of the aberrant shrinkage behavior of microtome sections as compared with blocks of wood. Calculated as the difference between specific volumes of cell wall and wood substance, voids in the dry cell walls of these 18 species occupied from 1.64 to 4.76% of cell-wall volume. Swollen cell-wall specific volumes derived by means of an optical technique, the validity of which has been questioned, ranged from 0.894 to 1.206 cc/g, implying water-filled voids in swollen cell walls ranging from 0.231 to 0.546 cc/g.

Variation in specific volume of wood substance, and particularly in specific volume of dry cell walls, accounted for significant amounts of variation in strain behavior among these 18 species. In bending, tension, and compression parallel to grain, the effect of high specific volume is to increase strain at maximum load. The increase was manifest only beyond the proportional limit. This is the region of large plastic deformation, and it may be assumed that woods having cell walls of low density are more susceptible to time-dependent effects such as creep and relaxation.

Within proportional limit, the effect of increasing specific volume of cell walls is to decrease the efficiency of the cell wall in response to stress. The ratio of proportional limit to ultimate stress, at least in bending and tension, decreases similarly as the specific volume of wood substance and cell wall increases.

References

Berlyn, G. P. 1968a. A hypothesis of cell wall density. Forest Prod. J., 18(2): 34-36.nBerlyn, G. P. 1968b. Biophysical investigation of free space in tracheid cell walls. Amer. J. Bot., 55(6) Part 2: 728.nBerlyn, G. P. 1968c. Personal communication.nCampbell, W. B., and J. K. Russell. 1935. What is the true density of cellulose? Quart. Rev. Can. Forest Prod. Labs., Pulp and Paper Lab. Montreal, 21: 24-26.nClegg, G. C., and S. C. Harland. 1923. The measurable characters of raw cotton. I. The determination of area of cross section and hair weight per centimeter. J. Textile Inst., 14: 489-492.nCube, H. E., and G. A. Hulett. 1920. Some properties of charcoals. J. Amer. Chem. Soc., 42: 391.nDavidson, G. F. 1927. The specific volume of cotton cellulose. J. Textile Inst., 18: T175.nDunlap, F. 1914. Density of wood substance and porosity of wood. J. Agr. Res., 2(6): 423-428.nFeist, W. C., and H. Tarkow. 1967. Polymer exclusion in wood substance; a new procedure for measuring fiber saturation points. Forest Prod. J., 17(10): 65-68.nFengel, D. 1967. Ultramicrotomy, its application in wood research. Wood Sci. and Tech., 1(3): 191.nFrank, H. S., and W. Y. Wen. 1957. Structural aspects of ion-solvent interaction in aqueous solutions: A suggested picture of water structure. Discussions Faraday Soc., 24: 133.nFrey-Wyssling, A., and H. Speich. 1942. Über die Durchdringbarkeit der Cellulosefasern. Helv. Chim. Acta., 25: 1474-1484. CSIRO Translation No. 7589 (1965).nGoring, D. A. I. 1966. The structure of water in relation to the properties of wood constituents. Pulp Paper Mag. Can., 67(11): T-519-524.nHarkins, W. D., and D. T. Ewing. 1921. A high pressure due to adsorption, and density and volume relations of charcoal. J. Amer. Chem. Soc., 43: 1787.nHartig, R. 1882. Über die Verteilung der organischen Substanz, des Wassers und des Luftraumes in Baümen. Untersuchg. Forst-bot. Inst. München Bd. 2.nHeertjes, P. M. 1942. The density and sorption capacity of some samples of cotton, silk and wool. Part IV. Some remarks on the sorption of water by cotton, silk and wool. Rec. Trav. Chim. Pays-Bas, 61: 751.nHermans, P. H. 1946. Contributions to the physics of cellulose fibers. Elsevier, Amsterdam. 221 p.nHermans, P. H. 1949. Physics and chemistry of cellulose fibers. Elsevier, Amsterdam. 534 p.nHoward, H. C., and G. A. Hulett. 1924. A study of the density of carbon. J. Phys. Chem., 28: 1082-1095.nIfju, G., and R. W. Kennedy. 1962. Some variables affecting microtensile strength of Douglas-fir. Forest Prod. J., 12(5): 213-217.nJayme, G., and T. Krause. 1963. Über die Packungsdichte den Zellwande in Laubholzern. Holz als Roh- und Werkstoff, 21:(1): 14-19. PPRIC Translation Series #50 Woodlands Research Index No. 146 (1963).nKallmes, O., and C. Eckert. 1964. The structure of paper. VII. The application of the relative bonded area concept to paper evaluation. TAPPI, 47(9): 540-548.nKellogg, R. M., and G. Ifju. 1962. Influence of specific gravity and certain other factors on the tensile properties of wood. Forest Prod. J., 12(10): 463-470.nNemethy, G., and H. A. Scheraga. 1962. Structure of water and hydrophobic bonding in proteins. I. A model for the thermodynamic properties of liquid water. J. Chem. Phys., 36: 3382.nRaczkowski, J., and C. Stempien. 1967. Zur Beziehung zwischen der Rohdichte und der Reindichte von Holz. Holz als Roh- und Werkstoff 25(10): 380-383. Canada Dept. of Forestry Translation No. 199.nRamiah, M. V., and D. A. I. Goring. 1965. The thermal expansion of cellulose, hemicellulose and lignin. J. Polymer Sci., C11: 27-48.nSachs, J. 1879. Über die Anordnung den Zellen in jüngsten Pflanzenteilen. Arb. Bot. Inst. Würzburg Bd. 2. S.46.nSchwappach, A. 1897. Untersuchungen über Raumgewicht und Druckfestigkeit des Holzes wichtiger Waldbaüme. Berlin.nStamm, A. J. 1929. Density of wood substance, adsorption by wood, and permeability of wood. J. Phys. Chem., 33: 398-414.nStamm, A. J., and R. M. Seborg. 1934. Adsorption compression in cellulose and wood. I. Density measurements in benzene. J. Phys. Chem., 39: 133-142.nStamm, A. J., and L. A. Hansen. 1937. The bonding force of cellulosic materials for water (from specific volume and thermal data). J. Phys. Chem., 41: 1007-1016.nStamm, A. J. 1950. Specific volume of native cellulose. Textile Res. J., 20:(9): 631-636.nStamm, A. J. 1964. Wood and cellulose science. Ronald Press, New York. 549 p.nStamm, A. J., and H. T. Sanders. 1966. Specific gravity of the wood substance of loblolly pine as affected by chemical composition. TAPPI, 49(9): 397-400.nStamm, A. J. 1967. History of two phases of wood physics. Wood Sci. and Tech., 1(3): 186-190.nStayton, C. L., and C. A. Hart. 1965. Determining pore size distribution in softwoods with a mercury porosimeter. Forest Prod. J., 15(10): 435-440.nStone, J. E., and A. M. Scallan. 1965. A study of cell-wall structure by nitrogen adsorption. Pulp Paper Mag. Can., 66(8): T407-T414.nStone, J. E. 1966. The cell wall. Trend, 7: 4-9.nStamm, A. J., A. M. Scallan, and G. M. A. Aberson. 1966. The wall density of native cellulose fibers. Pulp Paper Mag. Can., 67(3): T263-T268.nStone, J. E., and A. M. Scallan. 1967. The effect of component removal upon the porous structure of the cell wall of wood. II. Swelling in water and the fiber saturation point. TAPPI, 50(10): 496-501.nTsoumis, G. 1964. Microscopic measurement of the amount of cell wall substance in wood and its relationship to specific gravity. TAPPI, 47(11): 675-677.nVorreiter, L. 1963. Fasersättigungsfeuchte und höchste Wasseraufnahme der Hölzer. Holzforschung, 17(5): 139-146.nWangaard, F. F. 1969. Cell-wall density of wood with particular reference to the southern pines. Wood Science, 1(4): 222-226.nWeatherwax, R. C., and H. Tarkow. 1968a. Cell wall density of dry wood. Forest Prod. J., 18(2): 83-85.nWeatherwax, R. C. 1968b. Density of wood substance: Importance of penetration and adsorption compression of the displacement fluid. Forest Prod. J., 18(7): 44-46.nWilfong, J. G. 1966. Specific gravity of wood substance. Forest Prod. J., 16(1): 55-61.nWilliams, A. M. 1920. Forces in surface films. Proc. Roy. Soc. London, 98A: 223.nWilliams, A. M. 1922-23. Two properties of powders. Trans. Faraday Soc., 18: 87-90.nWorrall, J. 1963. The relationship between void volume and wood quality in western Canadian conifers. Undergraduate Thesis. Univ. of B. C. Vancouver.nYiannos, P. 1964. The apparent cell wall density of wood and pulp fibers. TAPPI, 47(8): 468-471.n

Downloads

Published

2007-06-22

Issue

Section

Research Contributions