Chemical Composition of Second Rotation <i>Populus</i> Hybrid NE-388

Authors

  • Paul R. Blankenhorn
  • Todd W. Bowersox
  • Charles H. Strauss
  • Kevin R. Kessler
  • Lee R. Stover
  • Maria L. DiCola

Keywords:

Site, specific gravity, chemical composition, rotation, management, Populus

Abstract

The influence of management strategy and rotation on specific gravity and chemical content (extractive, holocellulose, alpha-cellulose, and Klason lignin) values for second rotation 4-year-old Populus Hybrid NE-388 wood and bark specimens were investigated. Specific gravity values for wood were lowest for fertilization and fertilization/irrigation strategies and for bark were highest for fertilization and fertilization/irrigation strategies compared to control and irrigation strategies. Management strategies had little effect on the holocellulose and alpha-cellulose values for the second rotation. Management strategy and rotation had significant effects on extractive and Klason lignin contents for bark and the extractive content for wood. Second rotation average specific gravity values for wood were similar to or higher than first rotation values and average Klason lignin content values for bark were higher than first rotation values.

References

American Society for Testing and Materials. 1980. Standard test method for alpha-cellulose in wood. Part 22, ASTM D 1103-77. Standard test method for preparation of extractive-free wood. ASTM D 1105-79. Standard test method for lignin in wood. ASTM D 1106-77, Philadelphia, PA.nAnderson, H. W., and L. Zsuffa. 1975. Yield and wood quality of hybrid cottonwood grown in two-year rotation. Ontario Min. of Nat. Res., Forestry Research Report No. 101. 35 pp.nBendtsen, B. A. 1978. Properties of wood from improved and intensively managed trees. For. Prod. J. 28(10):61-72.nBlankenhorn, P. R., T. W. Bowersox, K. M. Kuklewski, and G. L. Stimely. 1985a. Comparison of selected fuel and chemical content values for seven Populus hybrid clones. Wood Fiber Sci. 17(2): 148-158.nBlankenhorn, P. R., T. W. Bowersox, K. M. Kuklewski, and G. L. Stimely. 1985b. Effects of rotation, site, and clone on the chemical composition of Populus hybrids. Wood Fiber Sci. 17(3):351-360.nBlankenhorn, P. R., T. W. Bowersox, C. H. Strauss, L. R. Stover, S. C. Grado, G. L. Stimely, M. L. DiCola, C. Hornicsar, and B. E. Lord. 1985c. Net financial and energy analyses for producing Populus hybrid under four management strategies—First rotation. Final report Oak Ridge National Laboratory ORNL/Sub/79-079281. 284 pp.nBlankenhorn, P. R., T. W. Bowersox, C. H. Strauss, G. L. Stimely, L. R. Stover, and M. L. DiCola. 1988. Effects of management strategy and site on selected properties of first rotation Populus hybrid NE-388. Wood Fiber Sci. 20(1):74-81.nBowersox, T. W., P. R. Blankenhorn, and W. K. Murphey. 1979. Heat of combustion, ash content, nutrient content, and chemical content of Populus hybrids. Wood Sci. 11(4):257-262.nBowersox, T. W., P. R. Blankenhorn, C. H. Strauss, W. R. Kilmer, S. C. Grado, and L. R. Stover. 1992a. Second rotation survival, height and diameter of dense Populus plantations in response to fertilization and irrigation. In progress.nBowersox, T. W., P. R. Blankenhorn, C. H. Strauss, W. R. Kilmer, S. C. Grado, and L. R. Stover. 1992b. Second rotation yields of Populus plantations in response to fertilization and irrigation. In progress.nBrowning, B. L. 1967. Methods of wood chemistry. John Wiley and Son, Interscience Publ. Inc., New York, NY. 882 pp.nCech, M. Y., R. W. Kennedy, and J. H. G. Smith. 1960. Variation in some wood quality attributes of one-year-old black cottonwood. Tappi 43(10):857-858.nDawson, D. H., J. G. Isebrands, and J. C. Gordon. 1976. Growth, dry weight yields, and specific gravity of 3-year-old Populus grown under intensive culture. USDA Forest Service Research Paper NC-122. 7 pp.nFege, A. S., R. E. Inman, and D. J. Salo. 1979. Energy farms for the future. J. Forestry 77:358-360.nGeyer, W. A. 1981. Growth, yield, and woody biomass characteristics of seven short-rotation hardwoods. Wood Sci. 13(4):209-215.nHolt, D. H., and W. K. Murphey. 1978. Properties of hybrid poplar juvenile wood affected by silvicultural treatments. Wood Sci. 10(4): 198-203.nHowlett, K., and A. Gamache. 1977. Silvicultural Biomass Farms, Vol. VI: forest and mill residues as potential sources of biomass. Natural Technical Information Service (Rep. MITRE-TR-7347-V6/LL, 124 pp.), Springfield, VA.nInman, R. E., D. J. Salo, and B. McGurK. 1977. Sitespecific production studies and cost analyses. National Technical Information Service (Rep. MITRE-TR-7347-V4, 123 pp.), McLean, VA.nMurphey, W. K., T. W. Bowersox, and P. R. Blankenhorn. 1979. Selected wood properties of young Populus hybrids. Wood Sci. 11(4):263-267.nRose, D. W. 1977. Cost of producing energy from wood in intensive cultures. J. Environmental Mgmt. 5:23-25.nRose, D. W., K. Ferguson, D. C. Lothner, and J. Zavitkov-ski. 1981. Hybrid poplar plantations in the lake states—A financial analysis. J. Forestry 79:661-667.nSmith, D. M. 1955. Maximum moisture content method for determining specific gravity of small wood samples, USDA Forest Service, Forest Products Lab, No. 2014, 8 pp.nStrauss, C. H., P. R. Blankenhorn, T. W. Bowersox, and S. C. Grado. 1988. A total cost analysis of alternate biomass supply systems. Forest Prod. J. 38(1): 47-51.n

Downloads

Published

2007-06-28

Issue

Section

Research Contributions