Characterization of the Reinforcement Potential of Different Softwood Kraft Fibers in Softwood/Hardwood Pulp Mixtures

Authors

  • Shawn D. Mansfield
  • R. Paul Kibblewhite
  • Mark J.C. Riddell

Keywords:

Fiber morphology, fiber dimensions, fiber flexibility, microfibril angle, refining, wet-pressing, pulp blends, reinforcement strength, handsheet properties, fracture energy

Abstract

Two morphologically different market kraft pulps, a New Zealand radiata pine medium grade and a benchmark northern hemisphere spruce pulp from interior British Columbia, were evaluated and compared for their reinforcement potential following supplementation at different levels to a Eucalyptus market kraft pulp. A full factorial experimental design including softwood pulps types, three levels of both wet-pressing and refining, and six different softwood proportions in softwood/eucalypt furnish mixtures (0, 5, 10, 15, 20, and 100%), was employed to generate two independent regression models using SAS General Linear Model procedure, from data obtained from handsheet evaluation. It was conclusively shown, with statistical significance, that the reinforcement potential of softwood market kraft pulps in softwood/hardwood mixtures can readily be characterized and predicted through the measurement of fracture energy index of handsheets made from 100% softwood fiber.

References

Baker, C. F. 1995. Good practice for refining the types of fiber found in modern paper furnishes. Tappi J.78(2):147-153.nBither, T. W., and J. F. Waterhouse. 1992. Strength development through refining and wet pressing. Tappi J.75(11):201-208.nBrindley, C. L., and R. P. Kibblewhite. 1996. Refining effects on eucalypt, mixed hardwood and softwood market kraft pulps and blends. Appita49(1):37-42.nCottrall, L. G. 1950. The influence of hemicelluloses in wood pulp fibers on their papermaking properties. Tappi33(9):471-480.nDonaldson, L. 1991. The use of pit apertures as windows to measure microfibril angle in chemical pulp fibers. Wood Fiber Sci.23(2):290-295.nFairbank, M., and R. Detrick. 2000. Hesperaloe funifera An excellent reinforcement fiber for mechanical paper grades. Tappi J.83(11):1-9.nHiltunen, E., H. Kettunen, J. E. Laine, and H. Paulapuro. 2000. Effect of softwood kraft refining on a mechanical-chemical mixture sheet. Tappi J.83(10):1-9.nKärenlampi, P. 1998. Mechanical properties of information papers: The effect of adding softwood kraft pulp. Tappi J.81(11):137-147.nKärenlampi, P., and Y. Yu. 1997. Fiber properties and paper fracture—Fiber length and fiber strength. Fundamentals of papermaking materials. Pages 521-545 in C. F. Baker, ed. Trans. 11th Fundamental Research Symposium. Pira Intl., Cambridge UK.nKärenlampi, P., T. Cichoracki, M. Alava, J. Pylkkö, and H. Paulapuro. 1998. A comparison of two test methods for estimating the fracture energy of paper. Tappi J.81(3):154-160.nKettunen, H., and K. Niskanen. 2000. On the in-plane tear test. Tappi J.83(4):1-8.nKibblewhite, R. P. 1987. New Zealand radiata pine market kraft pulp qualities. PAPRO New Zealand Technical Brochure, NZ Forest Research Institute Ltd. 4 pp.nKibblewhite, R. P. 1993. Effects of refined softwood/eucalypt pulp mixtures on paper properties. Pages 127-157 in C. F. Baker, ed. Trans. 10th Fundamental Research Symposium, Pira Intl., Cambridge UK.nKibblewhite, R. P. 1999a. Designer fibers for improved papers through exploiting genetic variation in wood microstructure. Appita J.52(6):429-435.nKibblewhite, R. P. 1999b. Evaluating processing potential of the wood of radiata pine trees through microstructure and chemistry. Pages 1-8 in 3rd Wood Quality Symposium Emerging technologies for evaluating wood quality, Rotorua & Melbourne November 30 and December 2.nKibblewhite, R. P., and D. G. Bailey. 1988. Measurement of fiber cross-section dimensions using image processing. Appita J.41(4):297-303.nKibblewhite, R. P., and A. D. Bawden. 1993. Radiata pine kraft fiber qualities—toplogs, thinnings, slabwood and a genetic misfit. NZ J. For. Sci.22(1):96-110.nKibblewhite, R. P., and C. J. A. Shelbourne. 1997. Genetic selection of trees with designer fibers for different paper and pulp grades. Pages 439-472 in C. F. Baker, ed. Trans. 11th Fundamental Research Symposium, Pira Intl., Cambridge UK.nLumiainen, J., and S. D. V. Oy. 1997. Refining of ECF and TCF bleached Scandinavian softwood kraft pulps under the same conditions. Paperi Ja Puu-Paper & Timber79(2):109-114.nMansfield, S. D., and R. P. Kibblewhite. 2000. Reinforcing potential of different eucalypt:softwood blends during separate and co-refining. Appita J.53(5):385-392.nMcDermid, D. 2000. Fracture toughness and important considerations for the pulp and paper industry. Pulp Paper Can.101(3):65-67.nNiskanen, K. J., M. J. Alava, E. T. Seppälä, and J. Åström. 1999. Fracture energy in fiber and bond failure. J. Pulp Pap. Sci.25(5):167-169.nSeth, R. 1990a. Fiber quality factors in papermaking. 1. The importance of fiber length and strength. Pages 125-141 in D. F. Caulfield, J. D. Passaretti, and S. F. Sobczynski, eds. Material Interactions Relevant to Pulp, Paper, and Wood Industries, Material Res. Soc., Pittsburgh, PA.nSeth, R. 1990b. Fiber quality factors in papermaking II. The importance of fiber coarseness. Pages 143-161 in D. F. Caulfield, J. D. Passaretti, and S. F. Sobczynski, eds. Material Interactions Relevant to Pulp, Paper, and Wood Industries, Material Res. Soc., Pittsburgh, PA.nSeth, R. 1996. Optimizing reinforcement pulps by fracture toughness. Tappi J.79(1):170-177.nSeth, R., and D. H. Page. 1988. Fiber properties and tearing resistance. Tappi J.71(2):103-107.nSteadman, R., and P. Luner. 1985. The effect of wet fiber flexibility on sheet apparent density. Pages 311-336 in C. F. Baker, ed. Trans. 8th Fundamental Research Symposium, Pira Intl., Cambridge UK.nThompson, J. O., J. W. Swanson, and L. E. Wise. 1953. Hemicelluloses and arabogalactans as beater adhesives. Tappi J.36(12):534-541.nTing, T. H. D., R. E. Johnston, and W. K. Chiu. 2001. Compression of paper in the z-direction—the effects of fiber morphology, wet pressing and refining. Appita J.55(2):378-384.nTryding, J., and P. J. Gustafsson. 2000. Characterization of tensile fracture properties of paper. Tappi J.83(2):84-89.nWahjudi, U., G. G. Duffy, and R. P. Kibblewhite. 1998. An evaluation of three formation testers using Pinus radiata kraft pulps. Appita J.51(6):423-427.nWanigaratne, D. M. S., W. J. Batchelor, and I. H. Parker. 2002. Comparison of fracture toughness of paper with tensile properties. Appita J.55(5):369-375.nWaterhouse, J. F. 1993. Effect of papermaking variables on formation. Tappi J.76(9):129-134.nWatson, A. J., and H. E. Dadswell. 1964. Influence of fiber morphology on paper properties. 4. Micellar spiral angle. Appita J.17(6):151-157.nWilliams, M. F. 1994. Matching wood fiber characteristics to pulp and paper processes and products. Tappi J.77(3):227-233.nYu, Y., H. Kettunen, H., E. J. Hiltunen, and K. J. Niskanen. 2001. Comparison of abaca and spruce as reinforcement fiber. Appita J.53(4):287-291.n

Downloads

Published

2007-06-05

Issue

Section

Research Contributions