Ultrastructural Characteristics of Mature Wood of Southern Red Oak (<i>Quercus Falcata</i> Michx.) and White Oak (<i>Quercus Alba</i> L.)

Authors

  • E. A. Wheeler
  • R. J. Thomas

Keywords:

Oak, wood anatomy, pit membranes, ultrastructure

Abstract

The fine structure of mature wood of white oak and southern red oak was studied using ultrathin sections and direct carbon replicas. In most details, the fine structure of the wood of these two species is similar. Differences detected include a slightly coarser appearance of intertracheary pit membranes and fewer vessel-ray parenchyma pit contacts in southern red oak. Intervessel pitting was not found in either species, implying that flow between vessels occurs via vasicentric tracheids as vessel-vasi-centric tracheid and vasicentric tracheid-vasicentric tracheid pitting is abundant. The appearance of the pit membranes differs in pits interconnecting different types of cells, e.g. vessel-vasicentric tracheid pit membranes were thicker than vasicentric tracheid-vasicentric tracheid pit membranes. Differences in the orientation of the pit aperture in the bordered pits of various cell types appeared to correlate with differing S2 orientations. Vessel-vasicentric tracheid and vasicentric tracheid-vasicentric tracheid pit membranes in the outer conducting sapwood and inner nonconducting sapwood appeared similar with randomly arranged microfibrils and no visible openings. In the outer and inner heartwood, these membranes were coated and infiltrated by extractives. The low permeability of multiseriate rays compared with uniseriate rays may be accounted for by the scarcity of lateral wall pitting and direct vessel-ray parenchyma cell contact in the interior of the multiseriate ray.

References

Behr, E. A., I. B. Sachs, B. F. Kukachka, and J. L. Blew. 1969. Microscopic examination of pressure-treated wood. For. Prod. J. 19(8):31-40.nBolton, A. J., P. Jardine, and G. L. Jones. 1975. Interstitial spaces: a review and observations on some Araucariaceae. Bull. Int. Assoc. Wood Anat. 1975/1:3-12.nBonner, L. D., and R. J. Thomas. 1972. The ultrastructure of intercellular passageways in vessels of yellow poplar. I: Vessel pitting. Wood Sci. Technol. 6:196-203.nBraun, H. J. 1970. Funktionelle Histologie der Sekundären Spossachse I. Das Holz. Gebruder Borntraeger, Berlin.nButterfield, B. G., and B. A. Meylan. 1973. Microfibrillar webs across vessel pit apertures. Wood Fiber 5:69-75.nCôté, W. A. 1963. Structural factors affecting the permeability of wood. J. Polymer Sci., Part C., No. 2, pp. 231-242.nCôté, W. A., Z. Koran, and A. C. Day. 1964. Replica techniques for electron microscopy of wood and paper. Tappi 47:477-484.nFengel, D. 1966a. Elektronenmikroskopische Beitrag zum Feinbau des Buchenholzes II. Weitere Beobachtungen an Markstrahlen der Buche. Holz Roh-. Werkst. 24:177-185.nFengel, D. 1966b. Electron-microscope contributions to the fine structure of Fagus sylvatica wood III. The fine structure of the pits in beech. Holz Roh-. Werkst. 24:245-253.nHarada, H. 1963. Electron microscopy of ultrathin sections of beech wood (Fagus crenata Blume). J. Japan Wood Res. Soc. 8:252-258.nHarada, H. 1965. Ultrastructure of angiosperm vessels and ray parenchyma. Pages 235-249 in W. A. Côté, ed. Cellular ultrastructure of woody plants. Syracuse University Press, NY.nHarada, H., and W. A. Côté. 1967. Cell wall organization in the pit border region of softwood tracheids. Holzforschung 21:81-85.nHuber, B. 1935. Die physiologische Bedeutung der Ring-und Zerstruetporigkeit. Ber. Dtsch. Bot. Ges. 53:711-719.nKlein, G. 1923. Zur Aetiologie der Thyllen. Z. Bot. 15:417-439.nMetcalfe, C. R., and L. Chalk. 1950. Anatomy of the dicotyledons. Clarendon Press, Oxford.nMeyer, R. W. 1967a. Tyloses development in white oak. For. Prod. J. 17(12):50-56.nMeyer, R. W. 1967b. Ultrastructural ontogeny of tyloses in Quercus alba L. Ph.D. Thesis, Syracuse University, Syracuse, NY.nMeyer, R. W., and W. A. Côté. 1968. Formation of the protective layer and its role in tylosis development. Wood Sci. Technol. 2:84-94.nMurmanis, L. 1976. Protective layer in xylem parenchyma cells of Quercus rubra.J. Appl. Polymer Sci. (Appl. Polymer Symp.) No. 28:1283-1292.nMyer, J. W. 1922. Ray volumes of the commercial woods of the United States and their significance. J. For. 20:337-351.nPanshin, A. J., and C. DeZeeuw. 1980. Textbook of wood technology, vol. 1, 4th ed., McGraw-Hill Book Co., NY.nSchmid, R. 1965. The fine structure of pits in hardwoods. Pages 291-304 in W. A. Côté, ed. Cellular ultrastructure of woody plants. Syracuse University Press, Syracuse, NY.nSchmid, R., and R. D. Machado. 1968. Pit membranes in hardwoods—fine structure and development. Protoplasma 66:185-204.nThomas, R. J. 1976. Anatomical features affecting liquid penetrability in three hardwood species. Wood Fiber 7:256-263.nWilliams, S. 1939. Secondary tissues of the oaks indigenous to the United States I. The importance of secondary xylem in delimiting Erythrobalanus and Leucobalanus.Bull. Torrey Bot. Club 66:353-365.nWilliams, S. 1942a. Secondary vascular tissues of the oaks indigenous to the United States II. Types of tyloses and their distribution in Erythrobalanus and Leucobalanus.Bull. Torrey Bot. Club 69:1-10.nWilliams, S. 1942b. Secondary vascular tissues of the oaks indigenous to the United States III. A comparative anatomical study of the wood of Leucobalanus and Erythrobalanus.Bull. Torrey Bot. Club 69:115-129.nYang, K. 1978. The fine structure of pits in yellow birch (Betula alleghaniensis Britton). Bull. Int. Assoc. Wood Anat. 1978/4:71-77.nZimmermann, M. H. 1968. Physiological aspects of wood anatomy. Bull. Int. Assoc. Wood Anat. 1968/2:11-14.nZimmermann, M. H., and Brown, C. L. 1971. Trees: structure and function. Springer-Verlag, New York, Berlin, Heidelberg.n

Downloads

Published

2007-06-27

Issue

Section

Research Contributions