Sorption and Thermodynamic Properties of Old and New <i>Pinus Sylvestris</i> Wood


  • Luis García Esteban
  • Paloma de Palacios
  • Francisco García Fernández
  • Antonio Guindeo
  • Nieves Navarro Cano


Thermodynamics, isosteric heat, isotherms, sorption, juvenile wood


The 35° and 50°C isotherms of juvenile Pinus sylvestris L. wood from recently cut trees were compared with those of juvenile wood of the same species previously forming part of an 18th century wooden building in order to determine the thermodynamic properties of the two types of wood through the isotherms. The isotherms were plotted using the gravimetric method of saturated salts in the water activity range of 0.11 to 0.97 for the 35°C isotherm and 0.11 to 0.96 for the 50°C isotherm. The sorption curves were fitted using the GAB method, and the isosteric heat of sorption was obtained by means of the integration method of the Clausius-Clapeyron equation. In both types of wood, the net isosteric heat decreases as the moisture content of the specimen increases, and the maximum values of isosteric heat in the new wood are greater than in the old wood, both in adsorption and desorption. This indicates that the bond energy in the new wood is greater than in the old wood.


Al-Muhtaseb, A. H., W. A. M. McMinn, and T. R. A. Magee 2004. Water sorption isotherms of starch powers. Part 2: Thermodynamic characteristics. J. Food Eng. 62: 135-142.nArslan, N., and H. Toğrul 2006. The fitting of various models to water sorption isotherms of tea stored in a chamber under controlled temperature and humidity. J. Stored Prod. Res. 42:112-135.nAviara, N. A., O. O. Ajibola, and S. A. Oni 2004. Sorption equilibrium and thermodynamic characteristics of soya bean. Biosyst. Eng. 87:179-190.nAvramidis, S. 1997. The basis of sorption. International Conference of COST Action E8, Mechanical performance of wood and wood products, Copenhagen, Denmark, June 16-17. Pp. 1-16.nBacour, P., and J. D. Daudin 2000. Development of a new method for fast measurement of water sorption isotherms in the high humidity range. Validation on gelatine gel. J. Food Eng. 44:97-107.nBao, F. C., Z. H. Jiang, H. M. Jiang, X. X. Lu, X. Q. Luo, and S. Y. Zhang 2001. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci. Technol. 35:363-375.nBhat, K. M., P. B. Priya, and P. Rugmini 2001. Characterisation of juvenile wood in teak. Wood Sci. Technol. 34:517-532.nChen, C. H. 2006. Obtaining the isosteric heat directly by sorption isotherm equations. J. Food Eng. 74:178-185.nCommunity Bureau of Reference. 1989. Certified Reference Material. Certificate of Measurement CRM 302. Water content of microcrystaline cellulose (MCC) in equilibrium with the atmosphere above specified aqueous saturated salt solutions at 25°C.nEsteban, L. G, A. Guindeo, P. De Palacios, and F. García. 2004. Saturated salt method determination of hysteresis of Pinus sylvestris L. wood for 35° isotherms. Mater. Constr. 276:51-64.nEsteban, L. G, J. Gril, P. De Palacios, and A. Guindeo 2005. Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles. Ann. For. Sci. 62:275-284.nEsteban, L. G, F. García, A. Guindeo, P. De Palacios, and J. Gril 2006. Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestrisL. Ann. For. Sci. 63:309-317.nGarcía, F. 2004. Histéresis higroscópica de la madera antigua de P. sylvestris L. PhD Thesis, Universidad Politécnica de Madrid, Madrid, Spain. Pp. 198-201.nHeliñska-Raczkowska, L., and E. Fabisiak 1999. Radial variation of earlywood vessel lumen. Holz Roh- Werkst. 57:283-286.nJowitt, R., and P. J. Wagstaffe 1989. The certification of the water content of microcrystaline cellulose (MCC) at 10 water activities, CRM 302. Commission of the European Communities. Community Bureau of Reference, EUR 12429. 54 pp.nKaya, S., and T. Kahyaoglu 2007. Moisture sorption and thermodynamic properties of safflower petals and tarragon. J. Food Eng. 78:413-421.nKadita, S., T. Yamada, and M. Suzuki 1961. Studies on rheological properties of wood I. Effect of moisture content on the dynamic Young's modulus of wood. Mokuzai Gakkaishi. 7:29-33.nKaymak-Ertekin, F., and M. Sultanoğlu 2001. Moisture sorption isotherm characteristics of peppers. J. Food Eng. 47:225-231.nKiranoudis, C. T., Z. B. Maroulis, E. Tsami, and D. Marinos-Kouris 1993. Equilibrium moisture content and heat of sorption of some vegetables. J. Food Eng. 20: 55-74.nLabuza, T. P. 1984. Moisture sorption: Practical aspects of isotherm measurement and use. Amer. Assoc. Cereal Chemists, St. Paul. 150 pp.nLahsasni, S., M. Kouila, and M. Mahrourz 2004. Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica). Energy Conv. Manag. 45:249-261.nMacaya, D. 2002. Diferenciación anatómica de la madera de Pinus sylvestris L. y de Pinus nigra Arnold subsp. salzmannii (Dunal) Franco en poblaciones sorianas. Proyecto Fin de Carrera, E.T.S.I. Montes, Universidad Politécnica de Madrid, Spain. 69 pp.nMaskan, M., and F. Göğüş. 1997. The fitting of various models to water sorption isotherms of pistachio nut paste. J. Food Eng. 33:227-237.nMathworks Inc. 2002. Statistics toolbox for use with Matlab®. User's guide V. 4.0. Release 13. Sixth printing. The MathWorks Inc., Natick, MA. 787 pp.nMcMinn, W.A.M., and T.R.A. Magee 2003. Thermodynamic properties of moisture sorption of potato. J. Food Eng. 60:157-165.nMoreira, M., F. Chenlo, M. J. Vázquez, and P. Cameán. 2005. Sorption isotherms of turnip top leaves and stems in the temperature range from 298 to 328K. J. Food Eng. 71:193-199.nMulet, A., P. García, N. Sanjuán, and J. García. 2002. Equilibrium isotherms and isosteric heats of morel (Morchella esculenta). J. Food Eng. 53:75-81.nMutz, R., E. Guilley, U. H. Sauter, and G. Nepveu 2004. Modelling juvenile-mature wood transition in Scots pine (Pinus sylvestris L.) using nonlinear mixed-effects models. Ann. For. Sci. 61:831-841.nPeralta, P.N., A.P. Bangi, and A. Lee 1997. Thermodynamics of moisture sorption by the giant-timber bamboo. Holzforschung 51:177-182.nQuirijns, E. J., A. Van Boxtel, W. Van Loon, and G. Van Straten 2005. Sorption isotherms, GAB parameters and isosteric heat of sorption. J. Sci. Food Agric. 85:1805-1814.nSiau, J. F. 1995. Wood: Influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University. 227 pp.nSingh, P. C., and R. K. Singh 1996. Application of GAB model for water sorption isotherms of food products. J. Food Process Preserv. 2:203-220.nSKAAR, C. 1988. Wood-water relations. Springer Series in Wood Science, Springer-Verlag. 283 pp.nThemelin, A., J. Rebollo, and A. Thibauth 1997. Method for defining the behaviour of lignocellulosic produces at sorption: Application to tropical wood species. International Conference of COST Action E8, Mechanical performance of wood and wood products, Copenhagen, Denmark, June 16-17. Pp. 17-32.nTsami, E. 1991. Net isosteric heat of sorption in dried fruits. J. Food Eng. 14:327-335.nVazquez, G., F. Chenlo, M. Moreira, and L. Carballo 1999. Desorption isotherms of muscatel and aledo grapes, and influence of pretreatments on muscatel isotherms. J. Food Eng. 39:409-414.nViolaz, P. E., and C. O. Rovedo 1999. Equilibrium sorption isotherms and thermodynamic properties of starch and gluten. J. Food Eng. 40:287-292.nWadsö, L. 1997. A review of methods to measure sorption isotherms and heats of sorption. International conference on wood-water relations. Cost Action E8, Copenhagen, Denmark, 16-17 June. Pp. 45-50.nWang, S. Y., and C. M. Chio 1990. The wood properties of Japanese cedar originated by seed and vegetative reproduction in Taiwan IV. The variation of the degree of crystallinity of cellulose. Mokuzai Gakkaishi 36:909-916.nYasuda, R., K. Minato, and M. Norimoto 1995. Moisture adsorption thermodynamics of chemically modified wood. Holzforschung 49:548-554.nYazdani, M., P. Sazandehchi, M. Azizi, and P. Ghobadi 2006. Moisture sorption isotherms and isosteric heat for pistachio. Eur. Food Res. Technol. 223:577-584.nZhang, P., and P. N. Peralta 1999. Moisture content-water potential characteristic curves for red oak and loblolly pine. Wood Fiber Sci. 31(4):360-369.n






Research Contributions