The Use of Cren To Improve <sup>13</sup>C-NMR Spectra of Compounds Containing Carbon Atoms Representative of Organics Dissolved In Kraft Black Liquor

Authors

  • Kenneth P. Wilson
  • Murray L. Laver
  • W. J. Frederick

Keywords:

Krait black liquor, CREN, <sup>13</sup>C-NMR, cellobiose, ferulic acid, vanillin

Abstract

Tris(ethylenediamine)chromium(III) chloride (CREN) was added as a relaxation agent for 13C-NMR spectra of cellobiose, ferulic acid [3-(4-hydroxy-3-methoxyphenyl)-2-trans-propenoic acid], and vanillin (4-hydroxy-3-methoxybenzaldehyde) in aqueous alkaline solutions. The three compounds contain carbon atoms representative of those in kraft black liquor dissolved organics. CREN improved the 13C-NMR spectra of the compounds by increasing the chemical shift dispersion in several cases, and by elucidating peaks that were not identifiable in 13C-NMR spectra without CREN.

References

Antonucci, F. R., and D. Smith. 1983. Analysis of black liquor by 13C-NMR. Abstract of Papers, The Pittsburgh Conference, Atlantic City, NJ Paper No. 105. The Pittsburgh Conference, Pittsburgh, PA.nBock, K. C., C. Pedersen, and H. Pedersen. 1984. Carbon-13 nuclear magnetic resonance data for oligoiaccharides. Pages 193-225 in R. S. Tipson and D. Horton, eds. Advances in carbohydrate chemistry and biochemistry, vol. 42. Academic Press, New York, NY.nBose, K. S., T. H. Witherup, and E. H. Abbott. 1977. Tris(ethylenediamine) chromium (III) chloride as a relaxation reagent in 13C-NMR and an aid for structure determination in aqueous solution. J. Mag. Res. 27:385-392.nFrederick, W. J., Jr., and T. M. Grace. 1981. Scaling in alkaline spent pulping liquor evaporators. Pages 587-601 in E. F. C. Somerscales and J. G. Knudsen, eds. Fouling of heat transfer equipment. Hemisphere Publ. Corp., Washington, DC.nGillard, R. D., and P. R. Mitchell. 1972. Tris(diamine) chromium(III) salts. Inorg. Synth. 13:184-186.nJohnson, L. F., and W. C. Jankowski. 1972. Carbon-13 NMR spectra. A collection of assigned, coded, and indexed spectra. Wiley-Interscience, New York, NY.nMarton, J. 1971. Reactions in alkaline pulping. Pages 639-694 in K. V. Sarkanen and C. H. Ludwig, eds. Lignins—occurrence, formation, structure and reactions. Wiley-Interscience, New York, NY.nNimz, H. H., D. Robert, O. Faix, and M. Nemr. 1981. Carbon-13 NMR spectra of lignins, 8. Structural differences between lignins of hardwoods, softwoods, grasses, and compression wood. Holzforschung 35:16-26.nObst, J. R., and L. L. Landucci. 1986. Quantitative 13C-NMR of lignins-methoxyharyl ratio. Holzforschung 40(Suppl.):87-92.nSarkanen, K. V., and C. H. Ludwig. 1971. Definition and nomenclature. Pages 1-18 in K. V. Sarkanen and C. H. Ludwig, eds. Lignins—occurrence, forriation, structure and reactions, Wiley-Interscience, New York, NY.nStreisel, R. C. 1987. Chemical equilibrium of nanprocess elements in the kraft recovery cycle. Ph.D. thesis, Oregon State University, Corvallis, OR.nWestervelt, H. H. 1981. A study of the calcium complex of the potassium salt of catechol-4-sulfonate in aqueous akaline media. Ph.D. thesis, The Institute of Paper Chemistry, Appleton, WI.nWestervelt, H. H., W. J. Frederick, Jr., E. W. Malcolm, and D. B. Easty. 1982. The determination and temperature dependence of the stability constant of the calciuracate-chol-4-sulfonate complex in alkaline, aqueous media. Anal. Chim. Acta 138:237-243.n

Downloads

Published

2007-06-19

Issue

Section

Research Contributions