Monitoring Bond Strength Development in Particleboard During Pressing, Using Acousto-Ultrasonics

Authors

  • Liheng Chen
  • Frank C. Beall

Keywords:

Adhesive cure, acousto-ultrasonics, internal bond, composite panels, hot-pressing, on-line sensing, nondestructive evaluation

Abstract

As with other composite products, the quality of particleboard is sensitive to the manufacturing process. However, there is still no efficient on-line technique available to monitor and control the most critical process in particleboard manufacture, adhesive cure during pressing. The objective of this study was to develop a technique, using Acousto-Ultrasonics (AU), to nonintrusively monitor the bonding development of particleboard during hot-pressing. A series of tests were run in a 610-by 610-mm laboratory press, in which a tone-burst signal with a fixed frequency of 60 kHz was injected into one platen via a waveguide and the signal received at the other platen. Phenol-formaldehyde resin was used for preliminary experiments and urea-formaldehyde resin for the main study. The degree of resin curing was assessed by measuring internal bond (IB), which was compared with an AU parameter, root mean square (RMS) voltage. During consolidation, RMS reacted primarily to the change of press pressure; subsequently, it followed the increase in IB and reached a plateau when the resin was completely cured. With extended pressing, RMS decreased, reflecting the degraded condition of the board. These results showed that RMS could be an index for the desired endpoint in pressing.

References

Beall, F. C. 1987. Acousto-ultrasonics monitoring of glueline curing. Wood Fiber Sci. 19(2):204-214.nBeall, F. C. 1989a. Acousto-ultrasonics monitoring of glue-line curing: Part II, Gel and curing time. Wood Fiber Sci. 21(3):231-238.nBeall, F. C. 1989b. Monitoring of in-situ curing of various wood-bonding adhesives using acousto-ultrasonics. Int. J. Adhesion and Adhesives 9(1):21-25.nBeall, F. C., and L. Chen. 2000. Ultrasonic monitoring of resin curing in a press for the production of particleboard and similar materials. Patent No. 6,029,520 (Feb. 29, 2000).nBeall, F. C., M. Tiitta, and J. M. Biernacki. 1998. The use of acousto-ultrasonics to detect biodeterioration in structural wooden members. Pages 181-206 in H. Dos Reis and B. B. Djordjevic, eds. Proc. Nondestructive Testing and Evaluation of Infrastructure, Vol 2 Topics on Nondestructive Evaluation Series. American Society for Nondestructive Testing, Columbus, OH.nBeauchamp, K. G., and C. K. Yuen. 1979. Digital methods for signal analysis, George Allen & Unwin Ltd., Boston, MA.nBiernacki, J. M., and F. C. Beall. 1993. Development of an acousto-ultrasonics scanning system for nondestructive evaluation of wood and wood laminates. Wood Fiber Sci. 25(3):289-297.nBodig, J. 1962. Wettability related to gluabilities of five Philippine mahoganies. Forest Prod. J. 12(6):265-270.nBuchert, J., G. Carlsson, L. Viikari, and G. Ström. 1996. Surface characterization of unbleached kraft pulps by enzymatic peeling and ESCA. Holzforschung 50(1):69-74.nCassens, D. L., J. P. Bradtmueller, and F. Picado. 1994. Variation in selected properties of industrial grade particleboard. Forest Prod. J. 44(10):50-56.nChen, C.-M. 1972. Measuring the wetting of wood surface by adhesives. Mokuzai Gakkaishi 18(9):451-456.nDickens, J. R., D. A. Bender, and D. E. Bray. 1996. A critical-angle ultrasonic technique for the inspection of wood parallel-to-grain. Wood Fiber Sci. 28(3):380-388.nDorighi, J., S. Krishnaswamy, and J. D. Achenbach. 1996. A fiber optic ultrasound sensor for monitoring the cure of epoxy. Rev. Prog. Quant. Eval. 15:657-664.nDruy, M. A., L. Elandjian, and W. A. Stevenson. 1990. In situ (autoclave) cure monitoring of composites with IR transmitting optical fibers. Rev. Prog. Quant. Eval. 9:2039-2046.nDuke, J. C. Jr., ed. 1988. Acousto-ultrasonics: Theory and application. Plenum Press, New York, NY.nEhrlich, M. J., C. V. O'Keefe, B. B. Djordjevic, and B. N. Ranganathan. 1994. Embedded acoustic sensors for process control and health monitoring of composite materials. Pages 7-12 in, R. E. Green, Jr., K. J. Kozaczek, and C. O. Ruud, eds. Nondestructive Characterization of Materials VI. Plenum Press, New York, NY.nFanconi, B., F. Wang, D. Hunston, and F. Mopsik. 1984. Cure monitoring for polymer matrix composites. Pages 275-291 in J. W. McCauley and V. Weiss, eds. Materials characterization for systems performance and reliability. Plenum Press, New York, NY.nFreeman, H. G., and F. F. Wangaard. 1960. Effect of wettability of wood on glue-line behavior of two urea resins. Forest Prod. J. 10(6):311-315.nGardner, D. J. 1991. Bonding surface activated hardwood flakeboard with phenol-formaldehyde resin: II: Flake surface chemistry. Holzforschung 45(3):215-222.nGray, V. R. 1962. The wettability of wood. Forest Prod. J. 12(6):452-461.nHarrold, R. T., Z. N. Sanjana, and R. Brynsvold. 1996. Acoustic waveguide cure curves for materials ranging from fast cure resins to slow cure concrete. Rev. Prog. Nondestructive Eval. 15:2297-2304.nHerczeg, A. 1965. Wettability of wood. Forest Prod. J. 15(11):499-505.nHeyman, J. S., W. P. Winfree, F. R. Parker, D. M. Heath, and C. S. Welch. 1989. Quantitative NDE Applied to Composites and Metals in Proc. Mat. Res. Soc. Symp. 142:211-220.nHughes, D. S. 1949. Transmission of elastic pulse in metal rods. Physical Rev. 75(10):1152. American Institute of Physics, New York, NY.nHumphrey, P. E. 1990. Some physical transformations that occur during the cure of thermosetting adhesive-to-wood bond. Pages 86-90 in A. H. Conner, A. W. Christiansen, G. E. Myers, B. H. River, C. B. Vick, and H. N. Spelter, eds. Wood adhesives 1990. USDA Forest Serv., Forest Prod. Lab. Madison, WI.nHumphrey, P. E., and A. J. Bolton 1979. Urea formaldehyde resin bond strength development with reference to wood particleboard manufacture. Holzforschung 33(4):129-133.nHumphrey, P. E., and A. J. Bolton. 1989. The hot pressing of dry-formed wood-based composites. Part II. A simulation model for heat and moisture transfer, and typical results. Holzforschung 43(3):199-206.nJen, C. K., B. Cao, K. T. Nguyen, C. A. Loong, and J. G. Legoux. 1997. On-line ultrasonic monitoring of a die-casting process using buffer rods. Ultrasonics 35: 335-344.nJohnson, E. C., J. D. Pollchik, and S. L. Zacharius. 1994. An ultrasonic testing technique for monitoring the cure and mechanical properties of polymeric materials. Pages 45-52 in R. E. Green Jr., K. J. Kozaczek, and C. O. Ruud, eds. Nondestructive characterization of materials VI. Plenum Press, New York, NY.nKapur, P., B. G. Frock, and P. K. Bhagat. 1990. Wiener filtering for image enhancement, in ultrasonic nondestructive evaluation. Mater. Eval. 48:1374.nKiernan, M. T., and J. C. Duke, Jr. 1991. Theoretical basis of the acousto-ultrasonic method. Acoustic emission: Current practice and future direction. ASTM STP 1077, W. Sache, J. Roget, and K. Yamaguchi, eds., American Society for Testing and Materials, Philadelphia, PA.nKline, R. A., N. Parasnis, and R. Konanur. 1994. Ultrasonic monitoring of cure in composite laminates, Rev. Prog. Nondestructive Eval. 13:2229-2236.nLindrose, A. M. 1978. Ultrasonic wave and moduli changes in a curing epoxy resin. Exp. Mech. 18(6):227-232.nMarcinko, J. J., P. L. Rinaldi, and S. Bao. 1999. Exploring the physicochemical nature of PMDI/wood structural composite adhesion. Forest Prod. J 49(5):75-78.nPapadakis, E. P. 1974. Monitoring the moduli of polymers with ultrasound. J. Appl. Phys. 45(3):1218-1222.nRokhlin, S. I. 1983. Evaluation of the curing of structural adhesives by ultrasonic interface waves. Correlation with strength. J. Composite Mat. 17:15-25.nRose, W. R., S. I. Rokhlin, P. B. Nagy, and L. Adler. 1987. Polar characteristics of the group and phase velocities as well as the frequency dependence of lamb waves in graphite/epoxy composites. Nondestructive Characterization of Materials II:61-68.nSofer, G. A., and E. A. Houser. 1952. A new tool for determination of the stage of polymerization of thermosetting polymers. J. Poly. Sci. 8(6):611-620.nSteiner, P. R., and S. R. Warren 1987. Behavior of urea-formaldehyde wood adhesives during early stages of cure. Forest Prod. J. 37(1):20-22.nSzesztay, M., Z. Laszlo-Hedvig, E. Kovacsovics, and F. Tüdös 1993. DSC Application for characterization of urea/formaldehyde condensation. Holz Roh-Werst. 51: 297-300.nVary, A., and R. F. Lark. 1979. Correlation of fiber composite tensile strength with the ultrasonic stress wave factor. J. Testing Eval. 7(4):85-191.nWolcott, M. P., and T. G. Rials. 1995. In-situ cure monitoring of isocyanate adhesives using microdielectric analysis. Forest Prod. J. 45(2):72-77.nYew, C. H. 1984. Using ultrasonic sh waves to estimate the quality of adhesive bonds: A preliminary study. J. Acoust. Soc. Am. 76(2):525-531.nYoung, R. H. 1985. Adhesive cure as determined by dynamic mechanical analysis and its effect on wood composite performance. Pages 267-276 in A. W. Christiansen, R. H. Gillespie, G. E. Myers, and B. H. River, eds. Wood adhesives in 1985: Status and needs. Forest Prod. Res. Soc., Madison, WI.n

Downloads

Published

2007-06-19

Issue

Section

Research Contributions