Basic Density in Norway Spruce, Part III. Development From Pith Outwards


  • Håkan Lindström


<i>Picea abies</i>, tree class, silviculture, wood formation, basic density, wood density, wood characteristics, crown development, models


A change in forest management using intensive silviculture is gradually transforming the conifer raw material base of the Swedish forest industry. As the end-use properties of forest products greatly depend on wood characteristics, such as tracheid length, tracheid diameter, microfibril angle, and basic density, there is increasing concern to foresee how silvicultural regulation of growth conditions alters wood properties.

In this study, a fertilization trial near Strasan, central Sweden, six net parcels of Norway spruce (Picea abies), planted in 1957 and clear-felled in the winter of 1989/1990, were used to evaluate the influence of varying growth conditions on basic density. Growth rate of each parcel had been regulated by annual dressings of nitrogen, phosphorus, potassium, and micronutrients.

The basic density, kg/m3, of individual growth rings at breast height, from pith outwards, using suppressed, intermediate, and dominant trees sampled from each parcel, was evaluated in different modeling approaches. In a modeling attempt based on growth conditions, site quality, initial stand density, thinning, tree class, climate, and cambial age were, separately or in interaction, found significant for basic density development with r2 = 0.46-0.63. These results suggest that crown development at stand and tree level over time will affect basic density.


Aronsson, A., and C. O. Tamm. 1991. Continuous measurement of stand and tree parameters at Strasan fertilization experiment. (Unpublished.) Dept. of Ecology and Environ. Res., Swedish Univ. Agric. Sciences, Uppsala. Sweden.nBarrett, J. D., and R. M. Kellogg. 1989. Strength and stiffness of dimension lumber. Pages 50-58 in R. M. Kellogg, ed. Second growth Douglas-fir: Its management and conversion for value. Special Publ. No. SP-32. For-intek Canada. Corp., Vancouver, B.C.nBendtsen, B. A. 1978. Properties of wood from improved and intensively managed trees. Forest Prod. J. 28(10):61-72.nBlouin, D., J. Beaulieu, G. Daoust, and J. Poliquin. 1994. Wood quality of Norway spruce in plantations in Quebec. Wood Fiber Sci. 26(3):342-353.nBrolin, A., A. Noren, and E. G. Stahl. 1995. Wood and paper characteristics of juvenile Norway spruce: A comparison between a forest and an agricultural stand. Tappi 78(4):203-214.nBurger, H. 1953. Holz, Blattmenge and Zuwachs. XIII. Fichten im gleichalterigen Hochwald. Mitt. Schweiz. Anstalt forstl. Versuchsw. (29):38-103. Zürich.nDietrichson, J. 1963. Some results from an anatomic investigation of Norway spruce provenances in four international spruce tests of 1938 in Sweden and Norway. World Conf. on Forest Genetics and Tree Improvement, Stockholm, Sweden.nDietrichson, J. 1964. The selection problem and growth-rhythm. Silvae Genetica 13:178-184.nDünisch, O., and J. Bauch. 1994. Influence of mineral elements on wood formation of old growth spruce (Picea abies (L.) Karst.). Holzforschung 48:Suppl. 5-14.nEklund, B. 1957. Om granens årsringsvariationer inom mellersta Norrland och deras samband med klimatet. Medd. fr. Stat. Skogsforskn. Inst. 47(1):1-63.nElliott, G. K. 1970. Wood density in conifers. Tech. Comm. No. 8, Commonwealth Forestry Bureau, Oxford, England.nEricson, B. 1966. Gallringens inverkan pä vedens torr-rävolymvikt, höstvedhalt och kärnvedhalt hos tall och gran. Dept. of For. Yield Research Swedish Univ. Agric. Sciences, Res. Note 10:1-259. Stockholm, Sweden.nEriksson, H. 1976. Production of Norway spruce (Picea abies) in Sweden. Dept. of For. Yield Research Swedish Univ. Agric. Sciences, Res. Note 41, Map. Ref. Eng. Sum. 291 pp.nGrammel, R. 1990. Zusammanhänge zwischen Wach-tumsbedingungen and holztechnologischen Eigenschaften der Fichte. Forstw. Cbl. (109):119-129.nHakkila, P. 1968. Geographical variation of some properties of pine and spruce pulpwood in Finland. Communications Instituti Forestalis Fenniae 66(8): 1-59.nHakkila, P. 1979. Wood density survey and dry weight tables for pine, spruce and birch stems in Finland. Communications Instituti Forestalis Fenniae 96(3): 1-59.nHakkila, P. and O. Uusvaara. 1968. On the basic density of plantation-grown Norway spruce. Communicationes Instituti Forestalis Fenniae 96(6): 1-22.nHildebrandt. G. 1954. Untersuchungen an Fichten-beständen über Zuwachs und Ertrag reiner Holzsubstanz., Deut. Verlag Wissenschaften, Berlin, Germany.nIlstedt, B., and G. Eriksson. 1986. Quality of intra-and interprovenance families of Picea abies (L.) Karst. Scand. J. For. Res. (1): 153-166.nJohansson, K. 1993. Influence of initial spacing and tree class on the basic density of Picea abies. Scand. J. For. Res. (8):18-27.nKärenlampi, P., E. Retulainen, and H. Kolehmainen. 1994. Properties of kraft pulps from different forest stands—Theory and experiment. Nordic Pulp Paper Res. J. 4(9):214-218.nKärkkäinen, M. 1984. Effect of tree social status on basic density of Norway spruce. Silva Fennica 18(2): 115-120.nKennedy, R. W. 1995. Coniferous wood quality in the future: Concerns and strategies. Wood Sci. Technol. 29: 321-338.nKienast, F., F. H. Schweingruber, O. U. Bräker, and E. Schar. 1987. Tree-ring studies on conifers along ecological gradients and the potential of single-year analysis. Can. J. For. Res. 17(7):683-696.nKlem, G. G. 1934. Undersökelser av granvirkets kvalitet. Medd. Norske Skogsforsøksv. 5(2): 197-348.nKlem, G. G. 1942. Planteavstandens inflytelse pä granvedens og sulfitcellulosens kvalitet. Medd. Norske Skogsfor-søksv. (28):257-293.nKliger, I. R., M. Perstorper. G. Johansson, and P. J. Pellicane. 1995. Quality of timber products from Norway spruce. Part 3. Influence of spatial position and growth characteristics on bending stiffness and strength. Wood Sci. Technol. 29:397-410.nKucera, B. 1994. A hypothesis relating current annual height increment to juvenile wood formation in Norway spruce. Wood Fiber Sci. 26(1): 152-167.nKyrkjeeide, P. A. 1990. A wood quality study of suppressed, intermediate and dominant trees of plantation grown Picea abies. Forest Products Laboratory, Madison, WI.nKyrkjeeide, P. A., and T. Thörnqvist. 1993. Tryckved—En litteraturstudie med reflexioner. Compression wood—A literature review with comments. Report 35. Dept. of Forest-Industry-Market Studies, Swedish Univ. Agric. Sciences, Uppsala, Sweden.nLarson, P. R. 1963. Stem form development of forest trees. Forest Sci. Monogr. (5): 1-42.nLarson, P. R. 1969. Wood formation and the concept of wood quality. Yale Univ. For. Bull. (74): 1-54.nLindström, H. 1996a. Basic density in Norway spruce, Part I. A literature review. Wood Fiber Sci. 28(1):15-27.nLindström, H. 1996b. Basic density in Norway spruce, Part II. Predicted by stem taper, mean growth ring width, and factors related to crown development. Wood Fiber Sci. 28(2):240-251.nMadsen, T. L., P. Moltesen, and P. O. Olesen. 1978. The influence of thinning degree on basic density, production of dry matter, branch thickness, and number of branches of Norway spruce. Det Forstl. Forsøgsv. Danm. (36): 181-204.nMadsen, T. L., P. Moltesen, and P. O. Olesen. 1985. Effect of fertilization on the basic density and production of dry matter in Norway spruce. Det Forstl. Forsøgsv. Danm. 40(2): 141-172.nMalmqvist, C. 1994. Hur har det gatt for Åkermarks-granen Överlevnad, skador, kvalitet, tillväxt och ekon-omi i praktiska planteringar anlagda under åren 1968-1973 i södra och mellersta Sverige. Dept, of Forestry-Industry-Market Studies. Swedish Univ. Agric. Sciences Report No. 32. Uppsala, Sweden.nMead, D. J., and C. O. Tamm. 1988. Growth and stem form changes in Picea abies as affected by stand nutrition. Scand. J. For. Res. (3):505-513.nMegraw, R. A. 1985. Wood quality factors in loblolly pine. The influence of tree age, position in tree, and cultural practise on wood specific gravity, fiber length, and fibril angle. Tappi Press. Atlanta, GA.nMoltesen, P., T. L. Madsen, and P. O. Olesen. 1985. The influence of spacing on the production of dry matter and wood quality of Norway spruce. Det Forstl. Forsøgsv. Danm. (40):53-76.nNylinder, P., and E. Hägglund. 1954. The influence of stand and tree properties on yield and quality of sulphite pulp of Swedish spruce (Picea excelsa). Rep. Forest Research Institute Sweden vol. 44, No. 11.nOlesen, P. O. 1976. The interrelation between basic density and ring width of Norway spruce. Det Forstl. Forsøgsv. Danm. (34):340-359.nOlesen, P. O. 1977. The variation of the basic density level and tracheid width within the juvenile and mature wood of Norway spruce. Forest Tree improv. (12: 1-21. Arbor., Hørsholm.nOlesen, P. O. 1982. The effect of cyclophysis on tracheid width and basic density in Norway spruce. Forest Tree Improv. (15): 1-77. Akademisk Forlag. Copenhagen, Denmark.nPersson, A. 1975. Wood and pulp of Norway spruce and Scots pine at various spacings. Swedish Univ. Agric. Sciences Note 37. Stockholm, Sweden.nSas Institute. 1994. SAS/STAT User's Guide. Version 6.09. 4th ed. Vols. 1. 2.nSavidge, R. A. 1993. Formation of annual rings in trees. Pages 343-365 in L. Rensing, ed. Oscillations and morphogenesis. Marcel Dekker, New York, NY.nTamm, C. O., A. Aronsson. and H. Burgtorf. 1974. The optimum nutrition experiment Strasan. A brief description of an experiment in a young stand of Norway spruce (Picea abies Karst.) Res. Note 17, Royal Coll. For. Dep. of Forest Ecology and Forest Soils Stockholm, Sweden. 29 pp.nThörnqvist. T. 1993. Juvenile wood in coniferous trees. Report D13:1993. Swedish Council for Building Research, Stockholm, Sweden.nTimell. T. 1986. Compression wood in gymnosperms. Springer Verlag, Berlin, New York, Tokyo.nTrendelenburg, R., and H. Mayer-Wegelin. 1955. Das Holz als Rohstoff. Carl Hanser. München, Germany.nZobel. B. J., and J. Van Buutenen. 1989. Wood variation, Its causes and control. Springer Verlag. Berlin, New York, Tokyo.n






Research Contributions